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Abstract
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1. Introduction

Spectral methods using either orthogonal polynomial or Fourier series expansions yield highl
rate approximations for smooth (and periodic in the Fourier case) functions. It is in part for this
that they have become popular for such applications as partial differential equations as well a
and image processing. However, when functions are only piecewise smooth (and/or non-period
Fourier case), the accuracy of spectral methods is reduced to first order away from discontinuit
spuriousO(1) oscillations form as the jump discontinuities are approached. This behavior is the
known Gibbs phenomenon, and its removal has been the subject of many investigations. Of co
would be preferable to appropriate a piecewise smooth function using spectrally accurate bas
regions of smoothness, and in doing so avoid the Gibbs phenomenon. However, in many appl
(e.g., tomography) the only information available is the set of global (pseudo)spectral coefficients
comes from a region that includes discontinuities.

Some techniques which resolve the Gibbs phenomenonup tothe discontinuity include: subtracting o
discontinuities to increase smoothness [6], re-expansions in terms of singular Padé approximat
analytic continuation methods [4], inverse methods [18], and Gegenbauer post-processing de
in [16] and expanded in a series of papers (see [14] for references). These different techniqu
different advantages, and no one method is inherently superior. However, so far only the Geg
post-processing method avoids solving a (frequently ill-conditioned) linear system and, as a re
often computationally more efficient.

The general theory for reprojection methods such as Gegenbauer post-processing can be foun
where the requirements for a reprojection basis are given as follows:

1. For a function analytic on the interval[−1,1], the function’s expansion in the orthogonal reproject
basis is exponentially convergent.

2. The projection of the high modes in the original basis on the low modes in the new basis is ex
tially small.

These two requirements define the new projection basis as aGibbs complement, which will be discussed
further in Sections 2 and 3.

The first requirement is easily motivated and accomplished. Clearly orthogonal polynomials, s
Chebyshev or Legendre polynomials, are well suited for approximating analytic functions in an in
(via linear transformation to[−1,1]), as they yield exponential convergence for analytic functions.
second requirement measures the error due to having limited information about the original fu
i.e., its truncated series approximation. Although easily understood, it is this requirement that
added complications. As was discovered originally in [16], under certain conditions the Gege
polynomials satisfy this second requirement, rendering it a suitable basis for reprojection. Ho
as indicated in the more general theory given in [15], the Gegenbauer polynomials serve onl
example of a Gibbs complementary basis. The purpose of this paper is to study other possibl
complements that offer advantages over the traditional Gegenbauer reconstruction method. In p
we seek to address the most notable difficulties in the Gegenbauer reconstruction method, spe
its extrapolatory nature which causes round-off error and the generalized Runge phenomenon, a
in [2]. This is especially problematic when the proximity of an off-axis singularity is less than 1. Although
some compensating techniques have been successfully applied [11,12,17], the consequences a
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Hence in this paper we reject the use of the Gegenbauer polynomials as a reprojection ba
develop an alternative Gibbs complementary basis that is less susceptible both to round-off erro
as to the Runge phenomenon. Moreover, we introduce a generalization of the theory developed
which makes the selection of a Gibbs complement basis more transparent, and as a result allow
improved understanding as to how to achieve the desirable properties of a reprojection basis. Thi
suggests the following additional requirement for a Gibbs complement:

3. As the order of the original projectionN increases, the weight function of the reprojection ba
converges to a weight function whose associated basis satisfies the first requirement of a Gib
plement.

We refer to a reprojection basis that satisfies requirements 1 through 3 as arobust Gibbs complement. The
fundamental difference between the Gegenbauer polynomial basis and a robust Gibbs compleme
in the limit as the original basis projection orderN goes to infinity. As discussed in [2], the Gegenba
projection approaches the power series expansion, which is guaranteed to converge forx ∈ [a, b] only
when the underlying function is analytic in the complex domain disk{z: |z − (b + a)/2| � (b − a)/2}.
In contrast, it will be shown in Section 3 that the convergence properties of a robust Gibbs comp
tary basis expansion approaches that of the limiting basis in the third requirement, and by definit
expansion converges exponentially for any function analytic on the real interval[a, b] [14]. This funda-
mental difference indicates that robust Gibbs complements yield the desired exponential converg
any piecewise analytic function, whereas the Gegenbauer reconstruction method is only converg
subset of piecewise analytic functions, even as the limit is approached.

The paper is organized as follows: In Section 2 we review the Gegenbauer reconstruction met
determine the causes of the aforementioned difficulties. This discussion will motivate the prope
a new (family of) reprojection bases, the robust Gibbs complements, which we discuss in Sectio
design in Section 3.2. For simplicity of presentation, we limit our discussion to the most widely use
where the original basis is the complex exponentials, i.e., the truncated Fourier series or trigon
interpolant, and note that the techniques described here should generalize easily to other truncat
series approximations. In Section 4 several numerical examples are illustrated, including case
the off-axis singularity proximity to[−1,1] is less than 1. Our results are summarized in Section 5
future research proposed.

2. The Gegenbauer reconstruction method

In order to motivate the rest of our paper, we describe the Gegenbauer reconstruction method
its strengths and weaknesses.

Let f (x) ∈ L2[−1,1] be apiecewiseanalytic function, and let[a, b] ⊂ [−1,1] be one of the analytic
sub-intervals. We wish to approximatef (x) in [a, b] from either its truncated Fourier series

SNf (x) :=
∑

|k|�N

f̂ke
iπkx, with f̂k := 1

2

1∫
f (x)e−iπkx, (2.1)
−1
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INf (x) :=
∑′

|k|�N

f̃ke
iπkx, with f̃k := 1

2N

N−1∑
ν=−N

f

(
ν

N

)
e−iπkν/N . (2.2)

It is well known thatSNf (x) andINf (x) are poor approximations off (x) in the smooth sub-interva
[a, b] with spurious Gibbs oscillations prevalent near the boundaries of the interval and orderO(1/N)

accuracy in the interior of the interval. However, as was shown in [16] and subsequent papers (
for references), it is possible to reconstructf (x) with exponential accuracy in the maximum norm o
the region of smoothness,[a, b], by reprojecting either (2.1) or (2.2) using the Gegenbauer polynom
defined below.

Definition 2.1 [1]. The Gegenbauer polynomialsCλ
n(x) for λ � 0 are the polynomials of degreen with

normalizationCλ
n(1) = Γ (n + 2λ)/n!Γ (2λ) that are orthogonal with respect to the weightedL2[−1,1]

inner product:
1∫

−1

(1− x2)λ− 1
2 Cλ

k (x)Cλ
n(x)dx = 0, k �= n. (2.3)

The weighted norm ofCλ
n(x) is given by

1∫
−1

(1− x2)λ− 1
2 Cλ

n(x)Cλ
n(x)dx = √

πCλ
n(1)

Γ (λ + 1
2)

Γ (λ)(n + λ)
=: hλ

n, (2.4)

and we designate the normalized Gegenbauer polynomials as

Φλ
l (x) = 1√

hλ
l

Cλ
l (x). (2.5)

Before detailing the convergence properties of Gegenbauer series we categorize analytic fun
terms of their extension into the complex plane. Letf (x) be an analytic function forx ∈ [−1,1]. Then
there exists some constant 0� r0 < 1 such that the function has a unique analytic extension onto
complex plane for the elliptical region (see, e.g., [14])

Dρ := {z: 2z = reiθ + r−1e−iθ , 0� θ � 2π, r0 � r � 1}. (2.6)

The truncated Gegenbauer series expansion off (x) is defined as

Gλ
m(f )(x) :=

m∑
l=0

f̂ λ
G(l)Φλ

l (x), (2.7)

where

f̂ λ
G(l) :=

1∫
−1

(1− x2)λ− 1
2 Φλ

l (x)f (x)dx. (2.8)

1 The ′ on the summation in Eq. (2.2) is the standard notation that the first and last elements in the sum should be div
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The series converges at the exponential rate

max
x∈[−1,1]

∣∣f (x) − Gλ
m(f )(x)

∣∣ � Const· m
√

m + λ

m

√
(m + 2λ)m+2λ

mm(2λ)2λ
rm, (2.9)

wherer is as defined in (2.6). This establishes that the Gegenbauer polynomials satisfy the firs
complement requirement listed in Section 1.

To apply the local Gegenbauer reprojection ofSNf (x) (2.1) in the region of smoothness[a, b], we
make the linear transformation ofx ∈ [a, b] to ξ ∈ [−1,1],

ξ = −1+ 2
x − a

b − a
, (2.10)

and apply the reprojectionGλ
m(SNf )(ξ(x)). We note that a similar reprojectionGλ

m(INf )(ξ(x)) can be
formed when the trigonometric interpolant (2.2) is given, and is discussed in Section 3.1.

The error for a Gegenbauer reconstruction can be decomposed into two parts,

f (x) − Gλ
m(SNf )

(
ξ(x)

) ≡ f (x) − Gλ
m(f )

(
ξ(x)

) + Gλ
m(f − SNf )

(
ξ(x)

)
. (2.11)

The first component has already been shown in (2.9) to decay exponentially inm for any fixed value ofλ.

The second term can be bounded by

∥∥Gλ
m(f − SNf )

∥∥
L∞(a,b)

� Cm,λ

(
2(λ − 1)

eπN

)λ−1(
1+ m

2λ + 1

)2λ(
1+ 2λ

m − 1

)m− 1
2

, (2.12)

whereCm,λ := Const·(m+λ)
√

(2λ − 1)(λ − 1) grows slowly [16]. Forλ fixed, this second error compo
nent only decays approximately at the rate(m2/N)λ. Hence the Gegenbauer reconstruction can ach
at most a fixed order of accuracy forλ fixed. Exponential decay of (2.12) inN requires thatboth the
Gegenbauer projection degreem and weight orderλ be selected proportional toN [16]. Although the
second requirement for the Gibbs complement is now satisfied, such a restriction severely inhi
convergence rate in (2.9). Specifically, it was shown in [14] that to ensure the exponential conve
of (2.9) withλ = γm ∼ N , it was sufficient to selectγ small enough such that

(1+ 2γ )(1+2γ )/2

(2γ )γ
r < 1,

wherer is as defined in (2.6). Recently it was demonstrated in [2,12] that it is in fact necessary toγ
sufficiently small, otherwise the Gegenbauer series will diverge for part of the interval[a, b]. Although
techniques have been developed in [11,12,17] to properly select the function-dependent Geg
parametersm andλ, the problem is more fundamental. For the Gegenbauer polynomials to satisf
requirements of a Gibbs complement it is necessary to link the parametersλ = γm ∼ N . As a result, the
Gegenbauer series converges to the power series expansion asN approaches infinity [2]. This is a dire
consequence of the Gegenbauer weight

wλ
G(ξ) := (1− ξ2)λ− 1

2 (2.13)

becoming increasingly concentrated at the origin, which causes the projection to become m
trapolatory. Consequently, for Gegenbauer reconstruction withλ = γm ∼ N , in the limit asN ↑ ∞,
convergence can only be guaranteed for functions which are analytic in the complex doma
{z: |z − (b + a)/2| � (b − a)/2}.
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Fig. 1. (a) The Gegenbauer weight(1 − ξ2)λ−1/2 becoming increasingly narrow for increasingλ = 4,8, and 12. (b) The
amplitude of the Gegenbauer polynomials shown as contour lines of log10max|Φλ

l
(ξ)| for ξ ∈ [−1,1]. The horizontal axis

represents the weight orderλ, and the vertical axis represents the polynomial orderl. Note the rapid increase in the polynom
amplitude for both parameters.

To summarize the previous discussion, the susceptibility of the Gegenbauer reconstruction m
both round-off error and the Runge phenomenon can dramatically impair its convergence propert
only is accuracy reduced, but in some cases the method fails to converge at all. These weakne
attributed to the weight function for the Gegenbauer reconstruction, (2.13), having the requirem
λ ∼ N . Fig. 1a displays how this weight function becomes more localized to the origin asλ increases. The
resulting projection becomes more extrapolatory, causing the generalized Runge phenomenon d
in [2]. In fact, it was proven in [2] that as the Gegenbauer weight parameterλ increases, the truncate
Gegenbauer expansion approaches the power series approximation which ispurelyextrapolatory. An ad
ditional consequence, exhibited in Fig. 1b, is that the amplitude of the Gegenbauer polynomia
rapidly, particularly as the boundariesx = ±1 are approached. Hence the corresponding Gegenbau
efficients (2.8) must decrease to values smaller than machine epsilon. The combination of large am
polynomials and extremely small coefficients leads to substantial round-off errors for even “mod
values ofm andλ [11].

Since clearly the problems with the Gegenbauer reconstruction method are due to the localiz
the weight function to the origin and subsequent growth of the Gegenbauer polynomials, it is de
to develop new reprojection bases. In addition to the first two requirements for Gibbs complemen
in Section 1, to alleviate the Runge phenomenon any new reprojection basis must approach a b
is exponentially convergent for any function analytic on[−1,1], i.e., the third requirement yielding
robust Gibbs complement. Such bases will have corresponding weight functions that are not ar
localized at the center, and consequently generate polynomials that are well conditioned in terms
amplitudes.

Although we do not know how to obtain the optimal weight function, or even if there is one, we ob
that a natural choice is one that uniformly weights as much of the region of smoothness as poss
example, we seek a weightw(ξ) such thatw(ξ) = 1 for a large portion of the interval and then smoot
decays to be nearly zero atξ = ±1. This will be quantified in Section 3, where we introduce a genera
tion of the error for a general reprojection as discussed in [15]. We then construct a family of weigh
yield both finite order and root exponential convergence rates. The family of weights culminates w
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construction of an analytic weight, the Freud weight. We show that the corresponding Freud poly
bases are a robust Gibbs complement yielding true exponentially convergent reconstructions.

It is important to note that the Gibbs complementary basis does not have to be a family of p
mials. However, to simplify the design and analysis of the reconstruction method, we will conside
polynomial choices.

3. A robust Gibbs complementary basis

Consider a functionf (x) ∈ L2[−1,1] that is analytic on an interval[a, b] ⊂ [−1,1]. We seek a high
resolution approximation off (x) for x ∈ [a, b] from either its truncated Fourier series (2.1) or trigo
metric interpolant (2.2). Rather than using Gegenbauer polynomials, we formulate the reconstru
terms of a general localized reprojection. To simplify the exposition we focus on the recovery fro
truncated Fourier series (2.1). Later in Section 3.1 we detail the minor modifications required wh
given data is the trigonometric interpolant (2.2).

We consider a family of robust Gibbs complementary bases{Ψ n
l }Ml=0 which are orthonormal for th

wn(·) weightedL2[−1,1] inner product. The truncated series expansion of a function in terms of a r
Gibbs complementary basis is given by

P n
M(f )(x) :=

M∑
l=0

f̂ n(l)Ψ n
l (x), (3.1)

where

f̂ n(l) :=
1∫

−1

Ψ n
l (x)wn(x)f (x)dx. (3.2)

Using the linear transformation (2.10), we reproject the Fourier series (2.1) to the local reg
smoothness[a, b] to obtainP n

M(SNf )(ξ(x)). The error after the reprojection can then be decompo
to separate the effects of the limited information in the original spectral projection,SNf (x), and the
convergence properties of the new truncated basis,{Ψ n

l (·)}Ml=0. Specifically, by adding and subtractin
the truncated approximation of the exact function in terms of the new basis, we arrive at

Err[a,b](M,N,f,n) := f − P n
M(SNf ) = f − P n

Mf + P n
M(f − SNf )

=: Trun[a,b](M,f,n) + Orth[a,b](M,N,f,n). (3.3)

The first error component, the truncation error, is controlled entirely by the convergence propertie
new basis, not on the degree of the original projectionN . (This error was originally called the regulariz
tion error in [16].) The second component is a measure of the near orthogonality of the spacesP n

M and
I − SN .

To bound the truncation error, recall that the first requirement of a Gibbs complement implies t
everyf (·) analytic on[a, b] there exists someρ(f,n) ≡ ρn > 1 andC(M) such that∣∣Trun[a,b](M,f,n)

∣∣ � max
ξ∈(−1,1)

∣∣f (ξ) − P n
M

(
f (ξ)

)∣∣ � C(M)ρ−M
n , (3.4)
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whereC(M) is at mostO(Mβ) for finite β > 0. Examples of a basis where this exponential converge
is obtained include the Gegenbauer polynomials for a fixed weight orderλ, or more generally, any bas
whereΨ n

l (·) is a polynomial of degreel that is orthogonal under a weight that is strictly positive for
but a set of measure zero in[−1,1], i.e.,wn(ξ) > 0 a.e. [8].

We now turn to the orthogonality error which quantifies the effects of possessing only a limited a
of information about the function of concern,f (·). This is realized by measuring the orthogonality of
reprojection spaceP n

M and the space containing the information about the function we seek to re
that is not known,I − SN , which being small indicates that the reprojection does not attempt to u
the unknown information. Hence, the second requirement for a Gibbs complementary indicates
orthogonality error will decay exponentially. To enforce this decay for a given reprojection weig
seek to bound the error

Orth[a,b](M,N,f,n) := P n
M(f − SNf )

=
M∑
l=0

Ψ n
l (ξ)

1∫
−1

wn(y)Ψ n
l (y)

(
f

(
x(y)

) − SNf
(
x(y)

))
dy

=
M∑
l=0

∑
|k|>N

f̂kΨ
n
l (ξ)

1∫
−1

eiπkx(y)wn(y)Ψ n
l (y)dy. (3.5)

Note that the unacceptably slowly decaying Fourier coefficients,f̂k, are weighted by the inner product

1∫
−1

eiπkx(y)wn(y)Ψ n
l (y)dy = eiπk(b+a)/2

1∫
−1

ei(kπ(b−a)/2)ywn(y)Ψ n
l (y)dy, (3.6)

which is simply the modulated Fourier coefficient ofwn(y)Ψ n
l (y),

ŵnΨ n
l (κ) =

1∫
−1

wn(y)Ψ n
l (y)e−iπκy dy. (3.7)

Here we have defined an effective coefficient numberκ := −k(b − a)/2, which isk scaled by the fraction
length of the interval,(b − a)/2. The orthogonality error is then dictated by

∣∣Orth[a,b](M,N,f )
∣∣ �

M∑
l=0

∑
|k|>N

∣∣f̂k

∣∣∥∥Ψ n
l

∥∥
L∞[−1,1]

∣∣∣∣ŵnΨ n
l

(
−k

b − a

2

)∣∣∣∣, (3.8)

where the decay of|ŵnΨ n
l (κ)| can be controlled by the smoothness of the underlying weight f

tion [13]. As stated in Section 2, the portion of the Gegenbauer reconstruction error which corre
to the orthogonalization error (2.12) only decays exponentially inN if the Gegenbauer weight orde
n = λ is selected proportional toN . This is a direct consequence of the finite regularity of the Ge
bauer weight (2.13) when extended periodically by zero. Hence there is only a finite order decay
for fixed λ. As stated previously, the Gegenbauer series approaches the power series asλ increases with
N [2]. As an overall consequence, the limit of the decay constants in the truncation error (3.4) app



A. Gelb, J. Tanner / Appl. Comput. Harmon. Anal. 20 (2006) 3–25 11

guar-
sk

emen-

g a
ojection

omi-
element
s
ere;
Rather,

ts
series,

ch those
riginal
pro-
ibbs

ro-

ponen-

tion

order of
one

in the

ourier
ntly the
one, i.e.,ρλ ↓ 1 asλ ↑ ∞. Moreover, this implies that the Gegenbauer reconstruction method is only
anteed to converge in the reprojected interval[a, b] if the function is analytic in the complex domain di
{z: |z − (b + a)/2| � (b − a)/2}, rather than just being analytic on the strip[a, b].

To avoid this pitfall we impose an additional constraint in constructing a robust Gibbs compl
tary; that is, that the non-negative weight functionswn(·) converge to a weight functionw∞ whose
associated orthogonal polynomials{Ψ ∞

l }Ml=0 form a basis that satisfies the first requirement of bein
Gibbs complement. This requirement enforces that the convergence properties of the new repr
basis converge to those of polynomials which are orthogonal with respect to the weightw∞, i.e., in (3.4)
we haveρn → ρ∞ > 1. This is easily proven inductively using the repeated application of the d
nated convergence theorem [7], and relying on the property of orthogonal bases that every fixed
of the Gibbs complementary basis and limiting basis is bounded in[−1,1]. However, the proof doe
not hold for the Gegenbauer basis asλ ↑ ∞ since the weights (2.13) approach zero almost everywh
and as a result, the limiting weight does not have an associated set of orthogonal polynomials.
it was shown in [2] that asλ increases, the Gegenbauer polynomialsΦλ

l (x) converge toclx
l for some

constantcl , and the Gegenbauer coefficientsf̂ λ
G(l) converges to 1/(l!cl)f

(l)(0). These combined resul
show that for increasingλ, the Gegenbauer series expansion of a function converges to its power
resulting in the generalized Runge phenomenon [2].

On the other hand, the convergence properties of a robust Gibbs complementary basis approa
of the limit basis which does not suffer from the Runge phenomenon. Hence for sufficiently large o
projection orderN , the reprojection will yield an accurate approximation of a function once the re
jection polynomial orderM is sufficiently large to resolve it. We compile the properties of a robust G
complement in the following definition:

Definition 3.1. A robust Gibbs complementary basissatisfies the following properties:

1. For a function analytic on the interval[−1,1], the expansion of the function in the orthogonal rep
jection basis is exponentially convergent.

2. The projection of the high modes in the original basis on the low modes in the new basis is ex
tially small.

3. As the order of the original projectionN increases, the weight function of the orthogonal reprojec
bases converges to a weight whose associated basis satisfy the first requirement.

We note in the third requirement that the weight function has parameters that depend on the
original projection termsN . Hence we are really referring to a family of weight functions rather than
particular weight function.

Before constructing examples of robust Gibbs complements we detail the minor modification
analysis when given the trigonometric interpolant (2.2) rather than the spectral projection (2.1).

3.1. Approximation of a piecewise smooth function from its equidistant samples

The reprojection method proposed above for the recovery of a function from its truncated F
series works equally well when the given information consists of equidistant samples, or equivale
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trigonometric interpolant of the function (2.2). The reprojectionP n
m(SNf )(x(ξ)) is simply replaced by

P n
M

(
INf

(
x(ξ)

)) =
M∑
l=0

ÎNf n
l Ψ n

l

(
x(ξ)

)
, (3.9)

where

ÎNf n
l :=

1∫
−1

Ψ n
l (ξ)wn(ξ)INf

(
x(ξ)

)
dξ.

The error is again decomposed into the truncation and orthogonalization error in the same fashion
The truncation error is unchanged, butf̂k is replaced byf̃k in the orthogonalization error bound (3.8
As before, the fundamental issues determining the convergence are the convergence properti
new basis and the near orthogonality of the spacesP n

M andI − IN ≡ I − SN . In fact, a slightly larger
orthogonality error bound achieved by using|f̂k|, |f̃k| � ‖f ‖L1[−1,1],

∣∣Orth[a,b](M,N,f,n)
∣∣ � ‖f ‖L1[−1,1]

M∑
l=0

∑
|k|>N

∥∥Ψ n
l

∥∥
L∞[−1,1]

∣∣∣∣ŵnΨ n
l

(
−k

b − a

2

)∣∣∣∣, (3.10)

is valid for either the recovery from the truncated Fourier series or the trigonometric interpolant. W
turn to constructing an example of a robust Gibbs complement which suffers little from round-off e

3.2. An example of a robust Gibbs complement

Before constructing an example of a robust Gibbs complement we list two additional desirable
erties for the weight function of a reprojection basis: first, that it utilizes as much of the regi
smoothness as possible, and second, that the maximum amplitudes of the associated low ord
jection polynomials (l = 0,1, . . . ,M) increase at most only slowly with the order of the polynomial. T
reason for the first property is to incorporate in the reprojection as much information about the s
portion of the function as possible. The second property is selected both to decrease the ortho
error in the bound (3.8), as well as to make the reprojection less susceptible to numerical round-o
In particular, for the Gegenbauer polynomials it has been shown that the rapid decay of the coe
(3.7) is sufficient to overcome the growth of the Gegenbauer polynomials magnitude, resulting in
ponentially decaying orthogonality error [14]. Yet in numerical implementations, round-off error c
the decay of (3.7) to be truncated at machine epsilon (see, e.g., [11]). This limits the number o
available in the reprojection,M , and as a result reduces the achievable accuracy in the reconstru
Moreover, for moderately oscillatory functions the number of terms required to resolve the functi
become large, resulting in the poorly conditioned polynomials due toλ ∼ N , as is apparent from Fig. 1

These two desirable properties are intimately related, and in addition to satisfying the third re
ment of a robust Gibbs complement, can be achieved by selecting a weight function for a repro
basis that will approachχ(−1,1) as the original projection orderN increases. As the weight goes t
ward χ(−1,1), the convergence properties of a polynomial robust Gibbs complement approaches
the Legendre polynomials,w1/2

G = χ(−1,1), which is well known to yield exponential convergent tru
cated series approximations for analytic functions on[−1,1]. As a consequence of this nearly unifo
weight, the corresponding polynomials also maintain a significantly smaller maximum amplitud
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do the Gegenbauer polynomials. Moreover, later we construct a weight where the maximum am
for a fixed degree polynomialdecreasesas the projection orderN increases. This property then sugge
that the growth rate of the reprojection basis, where the degree of the polynomialM grows withN , is
“moderate enough” so that round-off error does not become an inhibiting factor. We note that al
clearly some classical orthogonal polynomials have weights which nearly uniformly weight the
of smoothness, such as the Legendre polynomials with weights (2.13) forλ = 1/2, they do not satisfy
the second requirement of being Gibbs complementary [14]. Rather than use the Legendre we
rectly, we develop a family of weights that converge to the Legendre weight, yet which satisfy the
property of a Gibbs complement.

3.2.1. Reconstruction bases from finitely regular weight functions
Before constructing a robust Gibbs complementary basis, we briefly describe how a family o

native finite order bases can be developed, i.e., we relax the first requirement of a Gibbs com
and seek to recover only finite order accuracy. As mentioned before, although it is attractive to
Gegenbauer weight (2.13) and corresponding Gegenbauer polynomials as a family of reprojectio
they are not robust in reconstruction. This lack of robustness becomes most striking when con
the diagonal limit, where the weight and polynomial orders,λ andM respectively, grow proportionall
with the degree of the original projectionN [2]. As proposed in [11], this problem can be alleviated
relaxing the second condition of the Gibbs complement from being exponentially convergent to
only finitely convergent. The Gegenbauer polynomials are still used in reconstruction, butm andλ are
limited to reduce the effects of round-off error, resulting in fixed finite order approximations. Alth
this strategy can be implemented successfully, using the Gegenbauer reconstruction method
order accuracy is computationally inefficient. From the discussion above we recognize that other
can be constructed which will in addition have the advantage of satisfying the third requireme
robust Gibbs complement. The reconstruction methods produced from these finite order weights
ter conditioned and less susceptible to round-off error than the Gegenbauer weights (2.13). Exam
weights that generate such finite order robust Gibbs complements are

wc(ξ) :=
{

1, |ξ | � ξ0,

c(ξ), ξ0 < |ξ | � 1,
(3.11)

with c(·) selected to smoothly connect one for|ξ | � ξ0 to zero for|ξ | > 1. Such functions have bee
developed in the construction of classical filters, with the most common being the raised cosine,

crc(ξ) := 1

2

(
1+ cos

(
π

ξ − ξ0

1− ξ0

))
,

and sharpened raised cosine,

csrc(ξ) := c4
rc(ξ)

(
35− 84crc(ξ) + 70c2

rc(ξ) − 20c3
rc(ξ)

)
.

Furthermore, the weight can be designed to approachχ(−1,1) by selecting the translateξ0 to approach one
as the original projection order increases, i.e.,ξ0 ↑ 1 asN ↑ ∞.

We add that such a reprojection basis designed to recover a finite order approximation has
advantages over the classical non-adaptive filtered Fourier reconstruction. Specifically, theL∞ error will
maintain the finite order of the reconstruction throughout the interval, i.e., the approximation ne
end points will not deteriorate as it does for filtered reconstructions. While there are many appli
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where a finite order reconstruction is “good enough,” our goal here is to design weights to satisf
the robust Gibbs complement requirements.

3.2.2. Reconstruction bases from Gevrey regular weight functions
Another possible weight function to consider is an infinitely differentiable compactly supported

function. For example, it was shown in [20] that

wG(ξ) := exp

(
ξ2

ξ2 − 1

)
(3.12)

has Fourier coefficients that decay at the root exponential rate,

ŵG
k � Const· exp

(−η
√|k|), η > 0,

and consequently (3.7) also decays root exponentially (details are presented in Appendix A). Th
of compactly supported infinitely differentiable functions is usually cataloged in terms of Gevrey
larity, with (3.12) serving as an example of a Gevrey regular function. Using such compactly sup
weights will only allow an overall root exponential accuracy in the reprojection, instead of the d
true exponential accuracy which is achievable in theory through Gegenbauer reconstruction. He
will not pursue their construction further. We note, however, that there are certain advantages t
compactly supported weight functions. In particular, they would allow for more straight forward m
matical manipulation, i.e., no boundary terms in (3.16).

3.2.3. Reconstruction bases from Freud weight functions
We now proceed with the development of a family of weights which will yield an exponentially

vergent robust Gibbs complement. Following the line of thought in [21], we abandon strict co
support, and illustrate how a properly localized analytic weight allows for true exponential accura
though we are not aware of the optimal weight for the robust Gibbs complement, we propose a
that converges toχ(−1,1) and yields an overall exponential error decay. In this way, not only will the
currence of the Runge phenomenon be completely removed, but we also hope to limit the growt
corresponding polynomials, which will reduce the potential of round-off error. Throughout the rem
of this paper we focus on the family of Freud weights,

wn
F (ξ) := e−cξ2n

for n ∈ Z+. (3.13)

The orthogonal polynomials resulting from the Freud weights have been extensively studied si
early 1970s when Freud proposed them in [8] as the natural extension of Hermite polynomials (n = 1).
However they remain much less understood than the Gegenbauer polynomials. In particular, the
behavior of the convergence rate constants,ρ(f,wn

F ) in (3.4), and the three term recursion relatio
ships for their iterative construction are not known for generaln. Moreover, although we are consideri
reprojection bases that are orthonormal over the finite interval, the Freud polynomials are take
orthogonal over the real line. Despite these complications, by properly selecting the parameterc and
n of the Freud weights, we can obtain an orthogonal polynomial basis that satisfies the propert
robust Gibbs complementary basis. It is beyond the scope of this paper to fully develop the pro
of the Freud polynomials, instead we illustrate the relevant properties for moderate order polyn
analytically, and where necessary numerically.
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Fig. 2. (a) The Freud weight exp(−cξ2n) with parameters (3.14) andε = 10−24 becomes increasingly wider for increasi
n = 2,4, and 6. (b) Contour lines of log10max|Ψ n

l
(ξ)| for ξ ∈ [−1,1] with horizontal axis the weight ordern and vertical axis

the polynomial orderl. Note that forl fixed, the maximum amplitude decreases asn increases.

Let us consider the Freud weight (3.13) with parameters

n ≡ n(N) := round

(√
N

b − a

2
− 2

√
2

)
and c := − ln(ε). (3.14)

Hereε � 1 is the amplitude of the weight atξ = ±1, and the term(b − a)/2 � 1 accounts for the dila
tion to the region of smoothness[a, b] to give the effective number of wavelengths found in the smo
interval. The first requirement that the reprojection basis yield an exponentially convergent appr
tion for analytic functions is satisfied due to the weight being non-negative [8]. The third requirem
clearly satisfied as the weights approach the Legendre weightw

1/2
G := χ(−1,1) asN ↑ ∞. Before turning

to the remaining (second) requirement, we illustrate the evolution of the Freud weight for increasinN in
Fig. 2a, and show the corresponding growth rate of the polynomials in Fig. 2b. In contrast to the
bauer weight, which becomes increasingly narrow asN increases, notice that the Freud weight w
parameters (3.14) is increasingly uniform over(−1,1) and converges to the Legendre weight. Moreo
for a fixed order polynomiall, the maximum amplitude of its corresponding polynomialdecreasesasn

increases. This self-regularizing property dramatically reduces the round-off error in numerical
mentations.

To establish overall exponential convergence it remains to establish that for sufficiently low ord
Freud polynomials, which will serve as the reprojection basis, are nearly orthogonal to the origina
the complex exponentials{exp(iπkx)}|k|�N . More precisely, we must establish that (3.7) is exponent
small for l = 0,1, . . . ,M and|k| � N . Unfortunately, the incomplete knowledge about the Freud p
nomials prevents us from proving this result directly. Yet rather than use a Gevrey regular weight
which allows a fully rigorous proof of root exponential convergence, or a finitely regular weight (3
which yields a proof of finite order convergence, we submit both analytical and numerical eviden
strongly suggest the true exponential decay of (3.7) using the Freud weight (3.13) with properly s
parameters (3.14).

To establish the decay of (3.7) for the Freud weight, we separate the effects of smoothness
localization to|ξ | < 1 for the quantitywn

F (ξ)Ψ n
l (ξ). First we consider the integral taken over the r

line and applys consecutive integration by parts to obtain
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ng the

sion re-
∞∫
−∞

wn
F (y)Ψ n

l (y)e−iπκy dy = (−iπκ)−s

∞∫
−∞

e−iπκy ds

dys

(
wn

F (y)Ψ n
l (y)

)
dy, (3.15)

whereκ = −k(b − a)/2 has been previously defined. This integral can be bounded by separati
right-hand side into integrals for|y| � 1 and|y| > 1 yielding

(−iπκ)−s

∞∫
−∞

e−iπκy ds

dys

(
wn

F (y)Ψ n
l (y)

)
dy = I1 + I2,

where

I1 := (−iπκ)−s

∫
|y|�1

e−iπκy ds

dys

(
wn

F (y)Ψ n
l (y)

)
dy

and

I2 := (−iπκ)−s

∫
|y|>1

e−iπκy ds

dys

(
wn

F (y)Ψ n
l (y)

)
dy.

As explained in Appendix A, forwn
F (y)Ψ n

l (y) analytic, the portion where|y| � 1 can be controlled by
its regularity. Specifically, forη > 0 we have

(−iπκ)−s

∫
|y|�1

e−iπκy ds

dys

(
wn

F (y)Ψ n
l (y)

)
dy � Const· |κ| 1

2 e−πη|κ|.

We can then bound (3.15) by∣∣∣∣∣
∞∫

−∞
wn

F (y)Ψ n
l (y)e−iπκy dy

∣∣∣∣∣ � Const· |κ| 1
2 e−πη|κ| + (

π |κ|)−s

∫
|y|>1

∣∣∣∣ ds

dys

(
wn

F (y)Ψ n
l (y)

)∣∣∣∣dy.

Since the left-hand side can be bounded from below by∣∣∣∣∣
1∫

−1

wn
F (y)Ψ n

l (y)e−iπκy dy

∣∣∣∣∣ −
∣∣∣∣∣

∫
|y|>1

wn
F (y)Ψ n

l (y)e−iπκy dy

∣∣∣∣∣ �
∣∣∣∣∣

∞∫
−∞

wn
F (y)Ψ n

l (y)e−iπκy dy

∣∣∣∣∣,
the final bound for (3.7) is obtained by

∣∣ŵn
F Ψ n

l (κ)
∣∣ � Const· |κ| 1

2 e−πη|κ| + Const·
∞∫

y=1

∣∣wn
F (y)Ψ n

l (y)
∣∣dy

+ (
π |κ|)−smin

∫
|y|>1

∣∣∣∣ dsmin

dysmin

(
wn

F (y)Ψ n
l (y)

)∣∣∣∣dy. (3.16)

Heresmin := πη|κ| whereη > 0 is determined using (A.1).
Lacking more precise knowledge about the Freud polynomials, such as the three term recur

lationship coefficients, the authors are not aware of a technique to bound the decay ofwn (y)Ψ n(y) for
F l
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y > 1, and as a result prove that|ŵn
F Ψ n

l (κ)| is exponentially small forl = 0,1, . . . ,M and |k| � N .
Nevertheless, it is intuitively clear that for the parameterc in (3.14) sufficiently large compared to th
size ofM , the integrals on the right hand side of (3.16) can be made exponentially small by conn
parametersc to N . Alternatively, the integrals can be forced to be smaller than machine epsilon s
they will not interfere with the exponential convergence in numerical implementations.

To achieve exponential decay for the truncation error (3.4) we select the number of terms in the
jection basis so thatM grows withN, whereN is the number of terms in the original basis. Additiona
in order that the spacesP n

M andI − SN are nearly orthogonal, we incorporate a gap between the w
lengths inI − SN ≡ I − IN andP n

M by selectingM � N/4. Since the reprojection is taken only over t
largest region of smoothness,[a, b], which in general is not of the full interval of the original projecti
(defined here as[−1,1]), we weight the number of terms in the reprojection as

M := N

4

b − a

2
. (3.17)

This weighting by the fractional length(b − a)/2 allows for the proper decay of (3.7) for the polynom
ordersl = 0,1, . . . ,M , and the exponential powersκ := −k(b − a)/2 for |k| > N . It should be noted tha
unlike the Gegenbauer case, the selection ofM here is not function dependent. Hence using the Fr
weight based orthogonal polynomials as the reprojection bases is a “black box” reconstruction alg

We now turn to numerically illustrate that the reprojection basis based on the Freud weigh
parameters (3.14) satisfies the remaining (second) requirement, that is that the near orthogo
the reprojection space,P n

M , and the space in which information about the underlying function is
known,I − SN . Specifically, it is necessary to show that (3.7) is exponentially small forl = 0,1, . . . ,M

and|k| � N . Fig. 3 illustrates the magnitude of (3.7) for the interval[a, b] = [−1,1] with N = 64 and
128. The horizontal axis consists of the firstN/2 complex exponential powers beyond those give
the original projection,k = N + 1,N + 2, . . . ,3N/2, and the vertical axis consists of the order of
reprojection polynomials,l = 0,1, . . . ,M whereM = N/4. We selectε := 10−24 so that the weigh
smoothly connects to zero, although we remark that other values moderately below machine

(a) (b)

Fig. 3. The Log10 magnitude of the inner product (3.7) for the interval[a, b] = [−1,1] with (a) N = 64 and (b)N = 128.
The horizontal axis consists of the firstN/2 complex exponential powers beyond those given in the original projec
k = N + 1,N + 2, . . . ,3N/2, and the vertical axis consists of the order of the reprojection polynomials,l = 0,1, . . . ,M ,
whereM = N/4. We select the parameterε := 10−24 so that the weight smoothly connects to zero.
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also work well. Note the rapid (conjectured to be exponential) decay of the magnitude of (3.7),
decreases by approximately 10−2 asN is doubled.

It is important to realize the essential component of the orthogonality error, the decay of (3
not dependent on the function being recovered, so that the Freud polynomial bases have no f
dependent parameters to be estimated by the user. As noted previously, this is a significant ad
over Gegenbauer reconstruction, where its success is heavily reliant on the proper selection of
weight parameterλ and reprojection orderM [12].

4. Numerical examples

Lacking the three term recursion relationship of the Freud polynomials, we rely on a numerica
nique to construct the reprojection bases. Specifically, we utilize the Stieltjes procedure outlined
to generate approximations to the recursion relationships where the weight is taken over[−1,1]. A brief
description of the Stieltjes procedure is outlined in Appendix B, but we point the interested reade
comprehensive text [10] where the algorithm is discussed in detail and a computer code is provid

Before presenting the numerics we also address an important practical consideration, that of a
being fully resolved within machine accuracy with fewer than the designated order of polynomial =
0,1, . . . ,Mlim for someMlim < M . With the number of terms in the original projection increasing,
number of terms available in the reprojection basis will inevitably be more than is necessary to res
function numerically. Once this happens, due to round-off error, the reprojection coefficientsŜNf n(l) will
become limited to near machine epsilon. Combining these artificially large (machine epsilon) coef
with polynomials of increasing magnitude results in the degradation of the approximation qual
overcome this practical numerical concern, we additionally limit the number of terms in the reproj
basis at the first occurrence where the average of three consecutive coefficients is below some t
Tol. Specifically, if we let

Ŝave(l) := 1

3

(
ŜNf n(l − 1) + ŜNf n(l) + ŜNf n(l + 1)

)
, (4.1)

we can defineMn
lim as

Mn
lim := min

(
M,min

{
l such that̂Save(l) < Tol

})
. (4.2)

In the following numerical examples we contrast Gegenbauer reconstruction with parameteλ =
(N/8)(b − a)/2 and the Freud robust Gibbs complement with parameters (3.14) whereε = 10−24. For
both reprojection bases, the number of termsM is selected as in (3.17), with the above limiting whe
Tol := 10−14. As a result, accuracy beyond this threshold cannot be expected. Standard trap
quadrature with spacing 1/(2N) was used in computinĝSNf n(l) whereasÎNf n(l) was computed us
ing the trapezoidal quadrature with only the given equidistant sample,{f (ν/N)}N−1

ν=−N . This rather course
quadrature is permissible due to the exponential accuracy of the trapezoidal sum (see, e.g., [3,1

One of the primary motivations for the development of the robust Gibbs complements was
a reprojection basis that, rather than be extrapolatory, utilizes as much of the region of smooth
possible while still satisfying the second requirement of a Gibbs complement. In doing so, the
Gibbs complement also avoids the Runge phenomenon, allowing the recovery of any piecewise



A. Gelb, J. Tanner / Appl. Comput. Harmon. Anal. 20 (2006) 3–25 19

the

unge

is not
nd
stently
e region
t of
l

ation of

e phe-
nging

each
ar

r the
t

in the
of the

rcome

ent
es as
bust

rast
function onceN is sufficiently large to resolve it. As the following examples illustrate, not only is
Runge phenomenon eliminated, but the effects of round-off error are clearly reduced.

We begin by considering the reconstruction of a function suggested in [2] to measure the
phenomenon,

f symm,pole(x, zs) := [�(zs)
]2

{
1

[�(zs)]
2 + (x − �(zs))2

+ 1

[�(zs)]
2 + (x + �(zs))2

}
, (4.3)

wherezs is taken to be a fixed constant andf symm,pole is a function ofx with a pole atzs . We then measur
the ability of the Gegenbauer and Freud reprojection bases to recoverf symm,pole depending on the locatio
of the polezs . Figs. 4a–4c illustrate that the region of failed convergence due to Runge phenomeno
decreasing for the Gegenbauer weightλ = N/8, which although not optimal, satisfies both theoretical
numerical concerns from [11,12]. However, Figs. 4d–4f show that the region of convergence cons
increases for the Freud bases. In fact, the Runge phenomenon is not apparent at all. Rather, t
of failed convergence is a result of the function not being fully resolved with the limited amou
information in the known Fourier coefficients,{f̂ symm,pole

k }|k|�N . This example emphasizes how critic
the choice of parameters is to the Gegenbauer reconstruction. Specifically, we note the degrad
results from Fig. 4b to Fig. 4c. As was shown in [2,12], the reprojection polynomial degreeM and
weight orderλ must become increasingly smaller proportional toN as the off-axis singularity shrinks t
the origin.

Having established the advantages of the robust Gibbs complement in overcoming the Run
nomenon, we now compute an approximation of another test function put forth in [20] as a chall
function due to its sharp peak and the different regularity constants for the left and right regions:

f2(x) =
{

(2e2π(x+1) − 1− eπ)/(eπ − 1), x ∈ [−1,−1/2),

−sin(2πx/3+ π/3), x ∈ [−1/2,1).

Fig. 5 shows the behavior of both the Gegenbauer and Freud polynomial reconstructions
region of smoothness. For the region(−1,−1/2), both reconstructions continue to converge in sim
fashions due to the region not being fully resolved below machine epsilon forN � 256. However, for the
interval(−1/2,1), both methods have enough terms to fully resolve the function. Unfortunately, aft
Gegenbauer method has nearly resolved the function withN = 128, it continues to increase the weig
parameter,λ ∼ N , causing the reconstruction to become more extrapolatory. As a result, the error
Gegenbauer reconstruction increases due to the round-off errors and inherently poor conditionin
Gegenbauer polynomials (Fig. 1b). Methods have been developed in [11] which attempt to ov
this effect by properly selecting the Gegenbauer weight parameterλ. The increasingly poor conditionin
can be ameliorated by limitingλ, but only by accepting a reduced rate of convergence. This is ev
in Fig. 5a forx ∈ (−1/2,1), where the accuracy of the Gegenbauer reconstruction visibly decrea
the original projection orderN increases. On the other hand, as is evident in Fig. 2b, the Freud r
Gibbs complement actually provides increasingly better conditioned bases asN increases, rather tha
just limiting the poor conditioning. This is further exhibited in Fig. 5b, where it is clear that in con
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Fig. 4. The log10 of the L∞[−1,1] error in recoveringf symm,pole for zs in the upper right quadrant of the complex plan
i.e., [�(zs)], [�(zs)] ∈ (0,1], from its truncated Fourier coefficients, withN = 64 (a, d),N = 128 (b, e), andN = 256 (c, f).
�(zs) and�(zs) make up the respective horizontal and vertical axes. Results are from the Gegenbauer reprojection b
λ = N/8 (left) and the Freud robust Gibbs complement (right) with parameters (3.14) whereε = 10−24. In each plot the thick
contour line designating error of unit amplitude can be viewed as separating the region where an approximation is r
from the region where the reconstruction fails. Note that the region for which the Gegenbauer reprojection fails to c
does not decrease with increasingN , whereas the Freud reprojection yields not only an increasingly accurate reconstr
but also the region where the function is fully resolved from the given information is also increasing.
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Fig. 5. The error in recoveringf2 using the (a) Gegenbauer and (b) Freud reprojection bases with the same paramete
Fig. 4, except for the scaling by(b − a)/2 due to the length of the two intervals of smoothness,(−1,−1/2) and(−1/2,1). The
given data were the global, taken over[−1,1], Fourier series, withN = 64 (upper solid), 128 (dotted), and 256 (lower solid

Table 1
TheL∞ error for the approximation off2(x)

N Gegenbauer Freud

32 6.05(−1) 8.90(−1)

64 5.73(−1) 1.37(−1)

128 1.34(−4) 1.84(−4)

256 1.52(−6) 1.01(−7)

512 2.16(−9) 9.33(−13)
1024 1.43(−7) 5.27(−13)
2048 8.99(−7) 5.23(−14)
4096 1.23(−6) 6.59(−14)

Here we use the notationz(−r) := z × 10−r . The Gegenbauer reprojection bases becomes
increasingly extrapolatory, resulting in increasing round-off error forN > 512. In contrast,
the Freud robust Gibbs complement resolves the function byN = 512, and automatically
maintains the accuracy at about the user defined limiting tolerance level, here Tol= 1014.

to the increasing error in the Gegenbauer reconstruction, the Freud basis yields increasing acc
both regions of smoothness. This effect is further illustrated in Table 1 where the maximumL∞ errors,
excluding the discontinuitiesx = −1, −1/2, and 1, are measured. The Freud basis resolves the fun
and then maintains the accuracy at the size of the user selected Tol, whereas the Gegenbau
becomes more extrapolatory. The resulting poorly conditioned Gegenbauer polynomials cause th
error to increase after the function is fully resolved.

5. Summary and future work

Gegenbauer reconstruction with suitably selected weight parameterλ and reprojection orderM has
been shown to recover a function from its (pseudo)spectral data with exponential accuracy up
discontinuities. Unfortunately, as a result of the function-dependent parametersM andλ ∼ N , Gegen-
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wever,
be
bauer reconstruction suffers both from numerical round-off errors as well as the Runge pheno
[2,12]. Fortunately, this limitation is not due to the underlying approach of reprojecting the ava
(pseudo)spectral data with a Gibbs complementary basis. Rather, these problems come direc
using the Gegenbauer polynomials as the Gibbs complement.

Here we introduced a more general alternative error decomposition which make the desirable
a Gibbs complement more transparent. This insight allows the proposition of an additional requi
for the Gibbs complement. Specifically, we impose that the weight of the new orthogonal repro
basis approaches a weight whose associated orthogonal polynomials yield exponentially conve
ries expansions of functions analytic on[−1,1]. We refer to such reprojection bases asrobust Gibbs
complements. The Freud weights as defined in (3.13) satisfy this requirement, and have the add
desirable property of converging toχ(−1,1). As a result, the convergence properties of their correspon
Freud polynomials approach those of the more familiar Legendre polynomials for the reconstruc
smooth functions in[−1,1], i.e., they yield spectral convergence.

By satisfying this additional property, the reprojection bases are better conditioned in the sense
amplitude of the polynomials does not grow too rapidly. Moreover, the weight more uniformly ut
the region of smoothness, and the resulting reprojection basis approaching the Legendre poly
which are orthogonal under the limiting weightw

1/2
G = χ(−1,1). Although the optimal robust Gibbs com

plement is not known, we propose the properly selected Freud polynomials to illustrate the adv
of robust Gibbs complements over the Gegenbauer polynomials. Unfortunately, although the Freu
nomials have been studied extensively since the early 1970’s [9], many of their properties are no
for general parametern. As a consequence we are so far unable to determine the optimal parame
the Freud weight (3.13). Nevertheless, the values selected in (3.14) are numerically shown to sa
properties of a robust Gibbs complement, as displayed in Fig. 3. The numerical examples in Se
illustrate that the Freud polynomials achieve exponential accuracy up to the discontinuities witho
fering from the Runge phenomenon or significant round-off errors. It should also be noted that
Gegenbauer reconstruction, which requires function-dependent parameter tuning, the Freud pa
(3.14) are function independent.

Although the Freud reprojection basis establishes the importance of using a robust Gibbs comp
a great deal of work remains in fully developing this idea. The following topics will be consider
future investigations:

• Ideally, we wish to determine the optimal robust Gibbs complementary basis in that the spaceP n
M that

is “most orthogonal” toI −SN . If this cannot be done explicitly, it would be useful either to determ
the properties of the Freud polynomials necessary to rigorously prove the exponential converg
the reprojection, or possibly to select another basis which allows such a rigorous proof. Such
will not only further establish the Freud basis as an alternative for Gegenbauer post-process
should also allow for the optimal selection of the weight parameters as a function of the num
terms in the given (pseudo)spectral projection,N .

• It is important to ensure the near orthogonality ofI − IN andP n
M (second requirement) even wh

wn approaches a weight whose space spanned byP ∞
M is not exponentially orthogonal toI − IN .

In particular, we know from [16] and subsequent papers that the Legendre polynomials, to
our polynomials approach in limit, do not constitute a basis that satisfies this requirement. Ho
by appropriate selection ofM as a function ofN the second Gibbs complement property can
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maintained. With a further understanding of the particular reprojection basis, the precise beh
M can be established.

• As proposed in [15], the most optimal Gibbs complementary basis may not consist of polyno
Hence it would be useful to explore the construction a robust Gibbs complement that may
composed of polynomials.

• The Gegenbauer reconstruction method has also been developed when the original projec
sis consists of orthogonal polynomials, specifically Legendre, Chebyshev, and general Geg
polynomial bases. In addition the method has been utilized for spherical harmonics in two d
sions. Robust Gibbs complements should similarly be developed for these commonly used
projections in addition to the Fourier (pseudo)spectral basis discussed here.

• Finally, we wish to study the application of the Freud reprojection basis to various scientifi
ciplines. In particular, the Gegenbauer reconstruction method has been successfully appl
number of areas, including medical imaging and the post-processing of numerical hyperbolic
differential equations that admit solutions with shocks. Having established several significant
tages of the Freud robust Gibbs complement, we will pursue its effective implementation for v
applications.
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Appendix A. Gevrey weight functions and root exponential decay

Below, we briefly sketch an argument to show that infinitely differentiable compactly supported w
functions, discussed in Section 3.2.2 will yield a reprojection basis that provides root exponentia
racy. A more detailed analysis can be found in [19,20].

Gevrey regular functions are a class of compactly supported infinitely differentiable functions,
fied in terms of the growth rate of their derivatives. Specifically, a functionψ(·) is Gevrey order alpha i
equivalent to the statement∥∥ψ(s)

∥∥
L∞ � Const· η−s(s!)α

for someη > 0 andα � 1. With this bound, it is straightforward to show that the Fourier coeffici
of a function with Gevrey regular periodic extension decay at the root exponential rate. We ske
technique for this here.

Consider a Gevrey alpha regular function,ψ(x), compactly supported in[−1,1]. We apply integration
by partss times to its Fourier coefficient (2.1) to yield

f̂k = 2−1(−iπk)−s

1∫
ψ(s)(x)exp(−iπkx)dx.
−1
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Taking the absolute value of each side and passing it inside the integral we obtain∣∣f̂k

∣∣ �
(
π |k|)−s∥∥ψ(s)

∥∥
L∞,

which is valid for anys. By substituting in the Gevrey regularity bound and using Sterling’s inequa

s! � Const· √s

(
s

e

)s

,

we have∣∣f̂k

∣∣ � Const· sα/2

(
sα

eαπη|k|
)s

.

Since this bound is valid for alls, we can arrive at the nearly smallest bound by minimizing the domi
term,(sα/eαπη|k|)s , overs. The resulting minimum bound is∣∣f̂k

∣∣ � Const· √|k|exp
(−α

(
πη|k|)1/α)

, sα
min = πη|k|, (A.1)

illustrating the root exponential decay. The case of true exponential decay,α = 1, corresponds to analyt
functions which necessarily cannot be compactly supported.

Appendix B. The Stieltjes algorithm for computing the Freud reprojection basis

Below, we present the Stieltjes algorithm for computing polynomial orthogonal under the di
quadrature

〈f,g〉wn :=
∑

ν

f (tν)g(tν)w
n(tν), (B.1)

wheretν is a finite stencil on[−1,1]. Here we consider only the case of an even weightwn(·), which
simplifies the three term recursion relationship for the orthogonal polynomials to

Ψ n
k+1(t) = tΨ n

k (t) − βn
k Ψ n

k−1(t).

Applying the inner product for the orthogonal polynomials results in the formula for the recursion
ficient,

βn
k := 〈Ψ n

k ,Ψ n
k 〉wn

〈Ψ n
k−1,Ψ

n
k−1〉wn

. (B.2)

The Stieltjes algorithm for computing a family of orthogonal polynomials on a fixed stencil{tν}ν begins
with the base polynomialsΨ−1(t) := 0 andΨ0(t) := 1 and computes the first recursion coefficientβ0.
This coefficient is used to compute the values of the next orthogonal polynomial on the stenciltν , i.e.,
Ψ1(tν). The procedure is repeated inductively to compute the desired number of recursion coef
{βk}M−1

k=0 . A more comprehensive discussion of the Stieltjes and other algorithms for computing or
nal polynomials is given in [10].

When givenSNf (·) (2.1), the Freud orthogonal polynomials are computed on the meshtν := ν/(2N),
whereν = −2N,−2N + 1, . . . ,2N − 1. Alternatively, when given the equidistant sampled func
valuesf (xj ) for xj = −1+ j/(2N), j = 0, . . . ,2N −1, the Freud orthogonal polynomials are compu
on the same stencil. We note again that although the mesh is course given theN term (pseudo)spectra
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information, a very accurate approximation can be recovered due to the exponential accurac
trapezoidal quadrature formula for smooth periodic functions (e.g., [3,13]). We further note that wh
polynomials generated from the Stieltjes algorithm are orthogonal under the discrete inner produc
asN increases the recursion coefficients (B.2) approach those of the family of polynomials wh
orthogonal under the continuous inner product. Consequently, the generated orthogonal poly
approach those which are orthogonal under the continuous inner product [10].
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