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Abstract

The classical Gibbs phenomenon exhibited by global Fourier projections and interpolants can be resolved in
smooth regions by reprojecting in a truncated Gegenbauer series, achieving high resolution recovery of the function
up tothe point of discontinuity. Unfortunately, due to the poor conditioning of the Gegenbauer polynomials, the
method suffers both from numerical round-off error and the Runge phenomenon. In some cases the method fails
to converge. Following the work in [D. Gottlieb, C.W. Shu, Atti Conv. Lincei 147 (1998) 39-48], a more general
framework for reprojection methods is introduced here. From this insight we propose an additional requirement
on the reprojection basis which ameliorates the limitations of the Gegenbauer reconstruction. The new robust
Gibbs complementary basis yields a reliable exponentially accurate resolution of the Gibbs phenomenon up to the
discontinuities.
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1. Introduction

Spectral methods using either orthogonal polynomial or Fourier series expansions yield highly accu-
rate approximations for smooth (and periodic in the Fourier case) functions. It is in part for this reason
that they have become popular for such applications as partial differential equations as well as signal
and image processing. However, when functions are only piecewise smooth (and/or non-periodic in the
Fourier case), the accuracy of spectral methods is reduced to first order away from discontinuities, and
spuriousO(1) oscillations form as the jump discontinuities are approached. This behavior is the well-
known Gibbs phenomenon, and its removal has been the subject of many investigations. Of course, it
would be preferable to appropriate a piecewise smooth function using spectrally accurate bases ove
regions of smoothness, and in doing so avoid the Gibbs phenomenon. However, in many applications
(e.g., tomography) the only information available is the set of global (pseudo)spectral coefficients, which
comes from a region that includes discontinuities.

Some techniques which resolve the Gibbs phenomeapdathe discontinuity include: subtracting off
discontinuities to increase smoothness [6], re-expansions in terms of singular Padé approximations [5],
analytic continuation methods [4], inverse methods [18], and Gegenbauer post-processing developec
in [16] and expanded in a series of papers (see [14] for references). These different techniques offer
different advantages, and no one method is inherently superior. However, so far only the Gegenbauel
post-processing method avoids solving a (frequently ill-conditioned) linear system and, as a result, is
often computationally more efficient.

The general theory for reprojection methods such as Gegenbauer post-processing can be found in [15]
where the requirements for a reprojection basis are given as follows:

1. Forafunction analytic on the intervial 1, 1], the function’s expansion in the orthogonal reprojection
basis is exponentially convergent.

2. The projection of the high modes in the original basis on the low modes in the new basis is exponen-
tially small.

These two requirements define the new projection basisaktes complementvhich will be discussed
further in Sections 2 and 3.

The first requirement is easily motivated and accomplished. Clearly orthogonal polynomials, such as
Chebyshev or Legendre polynomials, are well suited for approximating analytic functions in an interval
(via linear transformation tp—1, 1]), as they yield exponential convergence for analytic functions. The
second requirement measures the error due to having limited information about the original function,
i.e., its truncated series approximation. Although easily understood, it is this requirement that causes
added complications. As was discovered originally in [16], under certain conditions the Gegenbauer
polynomials satisfy this second requirement, rendering it a suitable basis for reprojection. However,
as indicated in the more general theory given in [15], the Gegenbauer polynomials serve only as an
example of a Gibbs complementary basis. The purpose of this paper is to study other possible Gibbs
complements that offer advantages over the traditional Gegenbauer reconstruction method. In particula
we seek to address the most notable difficulties in the Gegenbauer reconstruction method, specifically
its extrapolatory nature which causes round-off error and the generalized Runge phenomenon, as terme
in [2]. This is especially problematic when the proximity of an off-axis singularity is less thaktough
some compensating techniques have been successfully applied [11,12,17], the consequences are that f
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some functions spectral accuracy is compromised, and in the most severe cases, the method will fail to
converge when implemented numerically.

Hence in this paper we reject the use of the Gegenbauer polynomials as a reprojection basis and
develop an alternative Gibbs complementary basis that is less susceptible both to round-off error as well
as to the Runge phenomenon. Moreover, we introduce a generalization of the theory developed in [15]
which makes the selection of a Gibbs complement basis more transparent, and as a result allows for an
improved understanding as to how to achieve the desirable properties of a reprojection basis. This insight
suggests the following additional requirement for a Gibbs complement:

3. As the order of the original projectioN increases, the weight function of the reprojection bases
converges to a weight function whose associated basis satisfies the first requirement of a Gibbs com-
plement.

We refer to a reprojection basis that satisfies requirements 1 throughr8lasaGibbs complemerithe
fundamental difference between the Gegenbauer polynomial basis and a robust Gibbs complement is seer
in the limit as the original basis projection ord€rgoes to infinity. As discussed in [2], the Gegenbauer
projection approaches the power series expansion, which is guaranteed to convergdgdob] only

when the underlying function is analytic in the complex domain ¢iskz — (b + a)/2| < (b — a)/2}.

In contrast, it will be shown in Section 3 that the convergence properties of a robust Gibbs complemen-
tary basis expansion approaches that of the limiting basis in the third requirement, and by definition this
expansion converges exponentially for any function analytic on the real inferval[14]. This funda-

mental difference indicates that robust Gibbs complements yield the desired exponential convergence for
any piecewise analytic function, whereas the Gegenbauer reconstruction method is only convergent for a
subset of piecewise analytic functions, even as the limit is approached.

The paper is organized as follows: In Section 2 we review the Gegenbauer reconstruction method and
determine the causes of the aforementioned difficulties. This discussion will motivate the properties of
a new (family of) reprojection bases, the robust Gibbs complements, which we discuss in Section 3 and
design in Section 3.2. For simplicity of presentation, we limit our discussion to the most widely used case
where the original basis is the complex exponentials, i.e., the truncated Fourier series or trigonometric
interpolant, and note that the techniques described here should generalize easily to other truncated globa
series approximations. In Section 4 several numerical examples are illustrated, including cases where
the off-axis singularity proximity tg—1, 1] is less than 1. Our results are summarized in Section 5, and
future research proposed.

2. The Gegenbauer reconstruction method

In order to motivate the rest of our paper, we describe the Gegenbauer reconstruction method and note
its strengths and weaknesses.

Let f(x) € L?[—1, 1] be apiecewiseanalytic function, and lefiz, b] C [—1, 1] be one of the analytic
sub-intervals. We wish to approximaféx) in [a, b] from either its truncated Fourier series

1
A . ~ 1 .
Sy f(x) = Z fee™> with fk::E/f(x)e”Tk", (2.1)
-1

[kISN
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or trigonometric interpolant

/A - 1 N1 v .

. imkx : . —imkv/N

Inf(x):= > fe™, with fi := o > f<ﬁ>e N, (2.2)
|k|<N v=—N

It is well known thatSy f(x) and Iy f (x) are poor approximations of (x) in the smooth sub-interval

[a, b] with spurious Gibbs oscillations prevalent near the boundaries of the interval and’ibgy)

accuracy in the interior of the interval. However, as was shown in [16] and subsequent papers (see [14]

for references), it is possible to reconstrifgtc) with exponential accuracy in the maximum norm over

the region of smoothnesf;, b], by reprojecting either (2.1) or (2.2) using the Gegenbauer polynomials

defined below.

Definition 2.1 [1]. The Gegenbauer polynomialg;: (x) for A > 0 are the polynomials of degreewith
normalizationC?(1) = I'(n + 21)/n!I"(2)) that are orthogonal with respect to the weighteg—1, 1]
inner product:

1
/(1—x2)’\_%C,?(x)Cﬁ(x)dx —0, k#n. (2.3)
1

The weighted norm o€} (x) is given by

1
L 2\A—3 i 2 _ 2 F(}‘+%) A
[a=ricincim = VrCH) g i =i (2.4)
-1
and we designate the normalized Gegenbauer polynomials as
1
®} (x) = —=C[ (x). (2.5)

hy

Before detailing the convergence properties of Gegenbauer series we categorize analytic functions in
terms of their extension into the complex plane. lfék) be an analytic function far € [—1, 1]. Then
there exists some constantOry < 1 such that the function has a unique analytic extension onto the
complex plane for the elliptical region (see, e.g., [14])
D,:={z: 2z=re" +r1e, 0<0 <27, ro<r <1 (2.6)
The truncated Gegenbauer series expansiof(of is defined as

Gh(H@) =) feh®} (x), (2.7)
[=0
where
1
Frt) = / (1— x2 37 (x) £ (x) dh. (2.8)
-1

1 The’ on the summation in Eq. (2.2) is the standard notation that the first and last elements in the sum should be divide by 2.
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The series converges at the exponential rate

m+2i
max ]f(x)—G;(f)(x)]<Const~m,/mrjk (m + 20" (2.9)

xe[-1.1] mm(2X)%

wherer is as defined in (2.6). This establishes that the Gegenbauer polynomials satisfy the first Gibbs
complement requirement listed in Section 1.

To apply the local Gegenbauer reprojectionSgff (x) (2.1) in the region of smoothne$s, »], we
make the linear transformation ofe [a, b]t0 £ € [—1, 1],
X —a
b—a’
and apply the reprojectioG’ (Sy f)(£(x)). We note that a similar reprojectiai’. (I f)(£(x)) can be
formed when the trigonometric interpolant (2.2) is given, and is discussed in Section 3.1.

The error for a Gegenbauer reconstruction can be decomposed into two parts,

f@) = GLSnH(EW) = fF(&) = G (H(EX) + G (f = Sy (EW)). (2.11)

The first component has already been shown in (2.9) to decay exponentialfpirany fixed value of..
The second term can be bounded by

1
20— 1\ m \"(, 2\
G (f—S <C, 1 1 , 2.12
|| m(f Nf)||L°°(a,b) ’)‘< en N ) +2)L+1 +m—1 ( )

whereC,, ; := Const (m + 1)/ (2. — 1)(» — 1) grows slowly [16]. Fon fixed, this second error compo-

nent only decays approximately at the rai€/N)*. Hence the Gegenbauer reconstruction can achieve

at most a fixed order of accuracy farfixed. Exponential decay of (2.12) iN requires thaboth the
Gegenbauer projection degreeand weight orden be selected proportional & [16]. Although the
second requirement for the Gibbs complement is now satisfied, such a restriction severely inhibits the
convergence rate in (2.9). Specifically, it was shown in [14] that to ensure the exponential convergence
of (2.9) withA = ym ~ N, it was sufficient to selegt small enough such that

(14 2y)d+2/2
2y)r

wherer is as defined in (2.6). Recently it was demonstrated in [2,12] that it is in fact necessary to have
sufficiently small, otherwise the Gegenbauer series will diverge for part of the infervdl Although
techniques have been developed in [11,12,17] to properly select the function-dependent Gegenbauer
parameters: and, the problem is more fundamental. For the Gegenbauer polynomials to satisfy both
requirements of a Gibbs complement it is necessary to link the parameteysn ~ N. As a result, the
Gegenbauer series converges to the power series expansiba@zoaches infinity [2]. This is a direct
consequence of the Gegenbauer weight

wh () == (1— 22 (2.13)

becoming increasingly concentrated at the origin, which causes the projection to become more ex-
trapolatory. Consequently, for Gegenbauer reconstruction withym ~ N, in the limit asN 1 oo,
convergence can only be guaranteed for functions which are analytic in the complex domain disk
{zilz=(b+a)/2| < (b—a)/2}.

F=—1+2 (2.10)

<1,



8 A. Gelb, J. Tanner / Appl. Comput. Harmon. Anal. 20 (2006) 3—25

(@) (b)

Fig. 1. (a) The Gegenbauer weigtlt — 52)1—1/2 becoming increasingly narrow for increasing= 4,8, and 12. (b) The
amplitude of the Gegenbauer polynomials shown as contour lines gjrh@q(b}(gﬂ for & € [—1, 1]. The horizontal axis
represents the weight orderand the vertical axis represents the polynomial otdBiote the rapid increase in the polynomial
amplitude for both parameters.

To summarize the previous discussion, the susceptibility of the Gegenbauer reconstruction method to
both round-off error and the Runge phenomenon can dramatically impair its convergence properties. Not
only is accuracy reduced, but in some cases the method fails to converge at all. These weaknesses a
attributed to the weight function for the Gegenbauer reconstruction, (2.13), having the requirement that
A ~ N.Fig. 1a displays how this weight function becomes more localized to the origimaseases. The
resulting projection becomes more extrapolatory, causing the generalized Runge phenomenon discusse
in [2]. In fact, it was proven in [2] that as the Gegenbauer weight parametareases, the truncated
Gegenbauer expansion approaches the power series approximation whicklyextrapolatory. An ad-
ditional consequence, exhibited in Fig. 1b, is that the amplitude of the Gegenbauer polynomials grow
rapidly, particularly as the boundaries= +1 are approached. Hence the corresponding Gegenbauer co-
efficients (2.8) must decrease to values smaller than machine epsilon. The combination of large amplitude
polynomials and extremely small coefficients leads to substantial round-off errors for even “moderate”
values ofm andx [11].

Since clearly the problems with the Gegenbauer reconstruction method are due to the localization of
the weight function to the origin and subsequent growth of the Gegenbauer polynomials, it is desirable
to develop new reprojection bases. In addition to the first two requirements for Gibbs complements listed
in Section 1, to alleviate the Runge phenomenon any new reprojection basis must approach a basis the
is exponentially convergent for any function analytic [el, 1], i.e., the third requirement yielding a
robust Gibbs complement. Such bases will have corresponding weight functions that are not arbitrarily
localized at the center, and consequently generate polynomials that are well conditioned in terms of their
amplitudes.

Although we do not know how to obtain the optimal weight function, or even if there is one, we observe
that a natural choice is one that uniformly weights as much of the region of smoothness as possible. For
example, we seek a weight(¢) such thatw (&) = 1 for a large portion of the interval and then smoothly
decays to be nearly zerogat= 1. This will be quantified in Section 3, where we introduce a generaliza-
tion of the error for a general reprojection as discussed in [15]. We then construct a family of weights that
yield both finite order and root exponential convergence rates. The family of weights culminates with the
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construction of an analytic weight, the Freud weight. We show that the corresponding Freud polynomial
bases are a robust Gibbs complement yielding true exponentially convergent reconstructions.

It is important to note that the Gibbs complementary basis does not have to be a family of polyno-
mials. However, to simplify the design and analysis of the reconstruction method, we will consider only
polynomial choices.

3. A robust Gibbscomplementary basis

Consider a functiory (x) € L?[—1, 1] that is analytic on an intervad, b] C [—1, 1]. We seek a high
resolution approximation of (x) for x € [a, b] from either its truncated Fourier series (2.1) or trigono-
metric interpolant (2.2). Rather than using Gegenbauer polynomials, we formulate the reconstruction in
terms of a general localized reprojection. To simplify the exposition we focus on the recovery from the
truncated Fourier series (2.1). Later in Section 3.1 we detail the minor modifications required when the
given data is the trigopnometric interpolant (2.2).

We consider a family of robust Gibbs complementary bgggg” ; which are orthonormal for the
w”(-) weightedL?[—1, 1] inner product. The truncated series expansion of a function in terms of a robust
Gibbs complementary basis is given by

M
Ph(H@) =Y fr 0¥ ), (3.2)
=0
where
1
1) = / W ()" (x) f (x) dx. (3.2)

-1

Using the linear transformation (2.10), we reproject the Fourier series (2.1) to the local region of
smoothnes$a, b] to obtain Py, (Sy f)(£(x)). The error after the reprojection can then be decomposed
to separate the effects of the limited information in the original spectral projecSipfi(x), and the
convergence properties of the new truncated b4gis(-)},. Specifically, by adding and subtracting
the truncated approximation of the exact function in terms of the new basis, we arrive at

ErMany(M, N, f,n):=f — Py(Snf)=f — Py f + Py(f —Snf)
=: Trun[a’b](M, f, I’l) + Ortha,h](M, N, f, I’l). (33)

The first error component, the truncation error, is controlled entirely by the convergence properties of the
new basis, not on the degree of the original projectibr{This error was originally called the regulariza-
tion error in [16].) The second component is a measure of the near orthogonality of the Bfjaard
I —Sy.

To bound the truncation error, recall that the first requirement of a Gibbs complement implies that for
every f(-) analytic on[a, b] there exists somg( f, n) = p, > 1 andC (M) such that

[Trunen (M. f.m| < max | £(&) = Py (f )] < CDp, ™, (3.4)
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whereC (M) is at mostO(M?#) for finite g > 0. Examples of a basis where this exponential convergence
is obtained include the Gegenbauer polynomials for a fixed weight ardermore generally, any basis
wherey/"(-) is a polynomial of degreéthat is orthogonal under a weight that is strictly positive for all
but a set of measure zerofinl, 1], i.e.,w" (&) > 0 a.e. [8].

We now turn to the orthogonality error which quantifies the effects of possessing only a limited amount
of information about the function of concerfi(-). This is realized by measuring the orthogonality of the
reprojection spacé;;, and the space containing the information about the function we seek to recover
that is not known/ — Sy, which being small indicates that the reprojection does not attempt to utilize
the unknown information. Hence, the second requirement for a Gibbs complementary indicates that the
orthogonality error will decay exponentially. To enforce this decay for a given reprojection weight we
seek to bound the error

Orthy, (M, N, f,n):= Py (f — SNf)

S we / WO (F () — S f (x()) dy

=0

= Z PINAAG! / e ()W (y) dy. (3.5)

(=0 |k|>N

Note that the unacceptably slowly decaying Fourier coefficiqf,gtare weighted by the inner product

1 1
/ imkx(y) n(y)q/n(y) dy _ emk(b+a)/2/ei(kﬂ(h—a)/Z)ywn(y)lpln(y) dy, (36)
-1

-1
which is simply the modulated Fourier coefficientwf(y)¥," (y),

1
W(K} = / w" (Y)Y (y)e ™ dy. (3.7)
-1
Here we have defined an effective coefficient numbet —k(b — a) /2, which isk scaled by the fraction
length of the interval(h — a)/2. The orthogonality error is then dictated by

— b—a
()

where the decay OFW(K)l can be controlled by the smoothness of the underlying weight func-
tion [13]. As stated in Section 2, the portion of the Gegenbauer reconstruction error which corresponds
to the orthogonalization error (2.12) only decays exponentiallyviif the Gegenbauer weight order

n = A is selected proportional t&y. This is a direct consequence of the finite regularity of the Gegen-
bauer weight (2.13) when extended periodically by zero. Hence there is only a finite order decay of (3.7)
for fixed A. As stated previously, the Gegenbauer series approaches the power skriesraases with

N [2]. As an overall consequence, the limit of the decay constants in the truncation error (3.4) approaches

|Orthy (M, N, f)| < , (3.8)

1=0 |k|>N
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one,i.e.p; | 1ask 1 oo. Moreover, this implies that the Gegenbauer reconstruction method is only guar-
anteed to converge in the reprojected intefwab] if the function is analytic in the complex domain disk
{z: 1z— (b+a)/2| < (b—a)/2}, rather than just being analytic on the stfip b].

To avoid this pitfall we impose an additional constraint in constructing a robust Gibbs complemen-
tary; that is, that the non-negative weight functian’(-) converge to a weight function*™ whose
associated orthogonal polynomigg >} ; form a basis that satisfies the first requirement of being a
Gibbs complement. This requirement enforces that the convergence properties of the new reprojection
basis converge to those of polynomials which are orthogonal with respect to the wéighe., in (3.4)
we havep, — p > 1. This is easily proven inductively using the repeated application of the domi-
nated convergence theorem [7], and relying on the property of orthogonal bases that every fixed element
of the Gibbs complementary basis and limiting basis is bounddd-in1]. However, the proof does
not hold for the Gegenbauer basisia$ co since the weights (2.13) approach zero almost everywhere;
and as a result, the limiting weight does not have an associated set of orthogonal polynomials. Rather,
it was shown in [2] that ag increases, the Gegenbauer polynomiafgx) converge ta;x! for some
constant;, and the Gegenbauer coefﬁcierf[i,:,(l) converges to A(l!c;) £ (0). These combined results
show that for increasing, the Gegenbauer series expansion of a function converges to its power series,
resulting in the generalized Runge phenomenon [2].

On the other hand, the convergence properties of a robust Gibbs complementary basis approach those
of the limit basis which does not suffer from the Runge phenomenon. Hence for sufficiently large original
projection orderN, the reprojection will yield an accurate approximation of a function once the repro-
jection polynomial ordeM is sufficiently large to resolve it. We compile the properties of a robust Gibbs
complement in the following definition:

Definition 3.1. A robust Gibbs complementary basiatisfies the following properties:

1. For afunction analytic on the intervial-1, 1], the expansion of the function in the orthogonal repro-
jection basis is exponentially convergent.

2. The projection of the high modes in the original basis on the low modes in the new basis is exponen-
tially small.

3. Asthe order of the original projectiavi increases, the weight function of the orthogonal reprojection
bases converges to a weight whose associated basis satisfy the first requirement.

We note in the third requirement that the weight function has parameters that depend on the order of
original projection term#v. Hence we are really referring to a family of weight functions rather than one
particular weight function.

Before constructing examples of robust Gibbs complements we detail the minor modification in the
analysis when given the trigonometric interpolant (2.2) rather than the spectral projection (2.1).

3.1. Approximation of a piecewise smooth function from its equidistant samples

The reprojection method proposed above for the recovery of a function from its truncated Fourier
series works equally well when the given information consists of equidistant samples, or equivalently the
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trigonometric interpolant of the function (2.2). The reproject®R)(Sy f)(x(£)) is simply replaced by

M
Py (In f(x(©))) = Y In 79 (x(6)), (3.9)

=0
where
1

Wil = [0 ©u s () .
-1
The error is again decomposed into the truncation and orthogonalization error in the same fashion as (3.3)
The truncation error is unchanged, bfgtis replaced byyf; in the orthogonalization error bound (3.8).

As before, the fundamental issues determining the convergence are the convergence properties of th
new basis and the near orthogonality of the spagsand! — Iy = I — Sy. In fact, a slightly larger

orthogonality error bound achieved by usinfgl, | /| < Il La—1.1s

/lI/\ kb —da
wr | —

! 2

is valid for either the recovery from the truncated Fourier series or the trigonometric interpolant. We now
turn to constructing an example of a robust Gibbs complement which suffers little from round-off errors.

, (3.10)

M
|Orthy (M, N, fm)| < U fllet—an D D0 19 | sy

=0 |k|>N

3.2. An example of a robust Gibbs complement

Before constructing an example of a robust Gibbs complement we list two additional desirable prop-
erties for the weight function of a reprojection basis: first, that it utilizes as much of the region of
smoothness as possible, and second, that the maximum amplitudes of the associated low order reprc
jection polynomials(=0, 1, ..., M) increase at most only slowly with the order of the polynomial. The
reason for the first property is to incorporate in the reprojection as much information about the smooth
portion of the function as possible. The second property is selected both to decrease the orthogonality
error in the bound (3.8), as well as to make the reprojection less susceptible to numerical round-off error.
In particular, for the Gegenbauer polynomials it has been shown that the rapid decay of the coefficients
(3.7) is sufficient to overcome the growth of the Gegenbauer polynomials magnitude, resulting in an ex-
ponentially decaying orthogonality error [14]. Yet in numerical implementations, round-off error causes
the decay of (3.7) to be truncated at machine epsilon (see, e.g., [11]). This limits the number of terms
available in the reprojectiony, and as a result reduces the achievable accuracy in the reconstruction.
Moreover, for moderately oscillatory functions the number of terms required to resolve the function can
become large, resulting in the poorly conditioned polynomials duetaV, as is apparent from Fig. 1b.

These two desirable properties are intimately related, and in addition to satisfying the third require-
ment of a robust Gibbs complement, can be achieved by selecting a weight function for a reprojection
basis that will approacly_1,1,) as the original projection orde¥ increases. As the weight goes to-
ward x_1.1), the convergence properties of a polynomial robust Gibbs complement approaches that of
the Legendre ponnomiaIsUé/2 = x(-1,1), Which is well known to yield exponential convergent trun-
cated series approximations for analytic functiong-ed, 1]. As a consequence of this nearly uniform
weight, the corresponding polynomials also maintain a significantly smaller maximum amplitude than
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do the Gegenbauer polynomials. Moreover, later we construct a weight where the maximum amplitude
for a fixed degree polynomialecreasess the projection orde€y increases. This property then suggests
that the growth rate of the reprojection basis, where the degree of the polyndangedws with N, is
“moderate enough” so that round-off error does not become an inhibiting factor. We note that although
clearly some classical orthogonal polynomials have weights which nearly uniformly weight the region
of smoothness, such as the Legendre polynomials with weights (2.13)=fdt/2, they do not satisfy

the second requirement of being Gibbs complementary [14]. Rather than use the Legendre weight di-
rectly, we develop a family of weights that converge to the Legendre weight, yet which satisfy the second
property of a Gibbs complement.

3.2.1. Reconstruction bases from finitely regular weight functions

Before constructing a robust Gibbs complementary basis, we briefly describe how a family of alter-
native finite order bases can be developed, i.e., we relax the first requirement of a Gibbs complement
and seek to recover only finite order accuracy. As mentioned before, although it is attractive to use the
Gegenbauer weight (2.13) and corresponding Gegenbauer polynomials as a family of reprojection bases,
they are not robust in reconstruction. This lack of robustness becomes most striking when considering
the diagonal limit, where the weight and polynomial orderand M respectively, grow proportionally
with the degree of the original projectiavi [2]. As proposed in [11], this problem can be alleviated by
relaxing the second condition of the Gibbs complement from being exponentially convergent to being
only finitely convergent. The Gegenbauer polynomials are still used in reconstruction,dnd 1 are
limited to reduce the effects of round-off error, resulting in fixed finite order approximations. Although
this strategy can be implemented successfully, using the Gegenbauer reconstruction method for finite
order accuracy is computationally inefficient. From the discussion above we recognize that other weights
can be constructed which will in addition have the advantage of satisfying the third requirement of a
robust Gibbs complement. The reconstruction methods produced from these finite order weights are bet-
ter conditioned and less susceptible to round-off error than the Gegenbauer weights (2.13). Examples of
weights that generate such finite order robust Gibbs complements are

1, €] < &o,
c€), &<l|&<],

with ¢(-) selected to smoothly connect one f6f < & to zero for|&| > 1. Such functions have been
developed in the construction of classical filters, with the most common being the raised cosine,

_1 £ — &
cre(€) 1= 2(1+Cos<n1_go>>,

and sharpened raised cosine,

csre€) 1= e (§) (35— Bdere(§) + TOCh,(§) — 20c3(£)).

Furthermore, the weight can be designed to approaciy, by selecting the translatg to approach one
as the original projection order increases, g4 1 asN % co.

We add that such a reprojection basis designed to recover a finite order approximation has certain
advantages over the classical non-adaptive filtered Fourier reconstruction. Specificdlly, éneor will
maintain the finite order of the reconstruction throughout the interval, i.e., the approximation near the
end points will not deteriorate as it does for filtered reconstructions. While there are many applications

W (E) = { (3.11)
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where a finite order reconstruction is “good enough,” our goal here is to design weights to satisfy all of
the robust Gibbs complement requirements.

3.2.2. Reconstruction bases from Gevrey regular weight functions
Another possible weight function to consider is an infinitely differentiable compactly supported cutoff
function. For example, it was shown in [20] that

%-2

has Fourier coefficients that decay at the root exponential rate,
Wy < Const exp(—ny/Ik[), n>0,

and consequently (3.7) also decays root exponentially (details are presented in Appendix A). The space
of compactly supported infinitely differentiable functions is usually cataloged in terms of Gevrey regu-
larity, with (3.12) serving as an example of a Gevrey regular function. Using such compactly supported
weights will only allow an overall root exponential accuracy in the reprojection, instead of the desired
true exponential accuracy which is achievable in theory through Gegenbauer reconstruction. Hence we
will not pursue their construction further. We note, however, that there are certain advantages to using
compactly supported weight functions. In particular, they would allow for more straight forward mathe-
matical manipulation, i.e., no boundary terms in (3.16).

3.2.3. Reconstruction bases from Freud weight functions

We now proceed with the development of a family of weights which will yield an exponentially con-
vergent robust Gibbs complement. Following the line of thought in [21], we abandon strict compact
support, and illustrate how a properly localized analytic weight allows for true exponential accuracy. Al-
though we are not aware of the optimal weight for the robust Gibbs complement, we propose a weight
that converges tq_1.1) and yields an overall exponential error decay. In this way, not only will the oc-
currence of the Runge phenomenon be completely removed, but we also hope to limit the growth of the
corresponding polynomials, which will reduce the potential of round-off error. Throughout the remainder
of this paper we focus on the family of Freud weights,

wh(g) :=e %" forneZ'. (3.13)

The orthogonal polynomials resulting from the Freud weights have been extensively studied since the
early 1970s when Freud proposed them in [8] as the natural extension of Hermite polynamaial3. (
However they remain much less understood than the Gegenbauer polynomials. In particular, the precise
behavior of the convergence rate constaptsf, w) in (3.4), and the three term recursion relation-
ships for their iterative construction are not known for generdlloreover, although we are considering
reprojection bases that are orthonormal over the finite interval, the Freud polynomials are taken to be
orthogonal over the real line. Despite these complications, by properly selecting the paransetdrs
n of the Freud weights, we can obtain an orthogonal polynomial basis that satisfies the properties of a
robust Gibbs complementary basis. It is beyond the scope of this paper to fully develop the properties
of the Freud polynomials, instead we illustrate the relevant properties for moderate order polynomials
analytically, and where necessary numerically.
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(

a) (b)
Fig. 2. (a) The Freud weight expc£2") with parameters (3.14) and= 1024 becomes increasingly wider for increasing
n=2,4, and 6. (b) Contour lines of Iqg max|l1/l" (&)| for & e [—1, 1] with horizontal axis the weight orderand vertical axis
the polynomial ordet. Note that for/ fixed, the maximum amplitude decreases a@screases.
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Let us consider the Freud weight (3.13) with parameters

n=n(N):= rounc(,/Nb ; ¢ _ 2\/§> and c:=—In(e). (3.14)

Heree « 1 is the amplitude of the weight &t= +1, and the ternid» — a)/2 < 1 accounts for the dila-

tion to the region of smoothnegs, »] to give the effective number of wavelengths found in the smooth
interval. The first requirement that the reprojection basis yield an exponentially convergent approxima-
tion for analytic functions is satisfied due to the weight being non-negative [8]. The third requirement is
clearly satisfied as the weights approach the Legendre We@ﬁt: X(-1.1) @SN 1 oo. Before turning

to the remaining (second) requirement, we illustrate the evolution of the Freud weight for incr¥asing

Fig. 2a, and show the corresponding growth rate of the polynomials in Fig. 2b. In contrast to the Gegen-
bauer weight, which becomes increasingly narronVacreases, notice that the Freud weight with
parameters (3.14) is increasingly uniform oyetl, 1) and converges to the Legendre weight. Moreover,

for a fixed order polynomial, the maximum amplitude of its corresponding polynondietreasesisn
increases. This self-regularizing property dramatically reduces the round-off error in numerical imple-
mentations.

To establish overall exponential convergence it remains to establish that for sufficiently low order the
Freud polynomials, which will serve as the reprojection basis, are nearly orthogonal to the original basis,
the complex exponentialexp(imkx)} <. More precisely, we must establish that (3.7) is exponentially
small forl =0,1,..., M and|k| > N. Unfortunately, the incomplete knowledge about the Freud poly-
nomials prevents us from proving this result directly. Yet rather than use a Gevrey regular weight (3.12),
which allows a fully rigorous proof of root exponential convergence, or a finitely regular weight (3.11),
which yields a proof of finite order convergence, we submit both analytical and numerical evidence that
strongly suggest the true exponential decay of (3.7) using the Freud weight (3.13) with properly selected
parameters (3.14).

To establish the decay of (3.7) for the Freud weight, we separate the effects of smoothness and the
localization tol&] < 1 for the quantityw’, (§)¥;"(§). First we consider the integral taken over the real
line and applys consecutive integration by parts to obtain
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o0 oo
N

iKYy : —s —IimKy d n n
/ wEWMY (y)e ™ dy = (—imk) / e ’@(wF(y)lI/, () dy, (3.15)
wherex = —k(b — a)/2 has been previously defined. This integral can be bounded by separating the
right-hand side into integrals fop| < 1 and|y| > 1 yielding

. -5 r —imKy ds n n
(i)™ / e (W ) dy = h+ I
where
. -5 —IiTK ds n n
Iy = (—imk) fe yd—ys(wF(y)‘I’z (y)) dy
lyl<1
and

o . n
I =(—ink)™* / e—’”’@d—ys(wp(y)‘lfl (y)) dy.

[yl>1

As explained in Appendix A, fow’. (y)¥/" (y) analytic, the portion whergy| < 1 can be controlled by
its regularity. Specifically, fon > 0 we have

o
(—imw)™ / e~ (wi ()% () dy < Const Jic|Ze T,

dys
lyI<1
We can then bound (3.15) by
i n n —imKy 1 —mn|k| —s o n n
wi (MY (y)e” ™ dy| < Const: [k |2e + (k) a (WM (»))|dy.
-0 ly|>1
Since the left-hand side can be bounded from below by
1 [e'9)
f wi (MY (y)e” ™ dy| — / wi (MY (e ™ dy| < f wi (MY (e ™ dy|,
-1 |y|>1 —00

the final bound for (3.7) is obtained by

o
|wiw (k)| < Const: |ic|2e~""! 4 Const f Wi ()] ()] dy

y=1

—Smin cfmin n n
)™ [ | o) o (3.16)

dy
ly/>1
Heresmin := mn|x| wheren > 0 is determined using (A.1).
Lacking more precise knowledge about the Freud polynomials, such as the three term recursion re-
lationship coefficients, the authors are not aware of a technique to bound the decagyo®;" (y) for
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y > 1, and as a result prove thab/’}?['(/c)l is exponentially small foi =0,1,..., M and k| > N.
Nevertheless, it is intuitively clear that for the parametén (3.14) sufficiently large compared to the
size of M, the integrals on the right hand side of (3.16) can be made exponentially small by connecting
parameters to N. Alternatively, the integrals can be forced to be smaller than machine epsilon so that
they will not interfere with the exponential convergence in numerical implementations.
To achieve exponential decay for the truncation error (3.4) we select the number of terms in the repro-
jection basis so tha¥/ grows withN, whereN is the number of terms in the original basis. Additionally,
in order that the space®);, and/ — Sy are nearly orthogonal, we incorporate a gap between the wave-
lengths inl — Sy =1 — Iy and Py, by selectingVl < N /4. Since the reprojection is taken only over the
largest region of smoothnegs, ], which in general is not of the full interval of the original projection
(defined here ak-1, 1]), we weight the number of terms in the reprojection as
M- Nb—a
=g
This weighting by the fractional lengtth — a)/2 allows for the proper decay of (3.7) for the polynomial
ordersd =0, 1, ..., M, and the exponential powets= —k(b — a)/2 for |k| > N. It should be noted that
unlike the Gegenbauer case, the selectioMofiere is not function dependent. Hence using the Freud
weight based orthogonal polynomials as the reprojection bases is a “black box” reconstruction algorithm.
We now turn to numerically illustrate that the reprojection basis based on the Freud weights with
parameters (3.14) satisfies the remaining (second) requirement, that is that the near orthogonality of
the reprojection space?;,, and the space in which information about the underlying function is not
known, I — Sy. Specifically, it is necessary to show that (3.7) is exponentially small$00, 1, ..., M
and|k| > N. Fig. 3 illustrates the magnitude of (3.7) for the interfealb] = [—1, 1] with N = 64 and
128. The horizontal axis consists of the firgf2 complex exponential powers beyond those given in
the original projectionk =N + 1, N + 2,...,3N/2, and the vertical axis consists of the order of the
reprojection polynomials, =0,1,..., M where M = N /4. We selecte := 10724 so that the weight
smoothly connects to zero, although we remark that other values moderately below machine epsilon

(3.17)

(a) (b)

Fig. 3. The Logg magnitude of the inner product (3.7) for the interyial b] = [—1, 1] with (&) N = 64 and (b)N = 128.

The horizontal axis consists of the firdt/2 complex exponential powers beyond those given in the original projection,
k=N+1LN+2,..., 3N/2, and the vertical axis consists of the order of the reprojection polynoniial), 1, ..., M,
whereM = N /4. We select the parameter= 1024 so that the weight smoothly connects to zero.
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also work well. Note the rapid (conjectured to be exponential) decay of the magnitude of (3.7), which
decreases by approximately Gas N is doubled.

It is important to realize the essential component of the orthogonality error, the decay of (3.7), is
not dependent on the function being recovered, so that the Freud polynomial bases have no function:
dependent parameters to be estimated by the user. As noted previously, this is a significant advantag
over Gegenbauer reconstruction, where its success is heavily reliant on the proper selection of both its
weight parametex and reprojection orde¥ [12].

4. Numerical examples

Lacking the three term recursion relationship of the Freud polynomials, we rely on a numerical tech-
nigue to construct the reprojection bases. Specifically, we utilize the Stieltjes procedure outlined in [10]
to generate approximations to the recursion relationships where the weight is takga bvBr A brief
description of the Stieltjes procedure is outlined in Appendix B, but we point the interested reader to the
comprehensive text [10] where the algorithm is discussed in detail and a computer code is provided.

Before presenting the numerics we also address an important practical consideration, that of a function
being fully resolved within machine accuracy with fewer than the designated order of polyndraials,
0,1,..., My, for someM;,, < M. With the number of terms in the original projection increasing, the
number of terms available in the reprojection basis will inevitably be more than is necessary to resolve the
function numerically. Once this happens, due to round-off error, the reprojection coeﬁiﬁi/@?ﬂel) will
become limited to near machine epsilon. Combining these artificially large (machine epsilon) coefficients
with polynomials of increasing magnitude results in the degradation of the approximation quality. To
overcome this practical numerical concern, we additionally limit the number of terms in the reprojection
basis at the first occurrence where the average of three consecutive coefficients is below some tolerance
Tol. Specifically, if we let

Savell) = %(SNf" =1+ Sy (D) + Sy 11+ D)), (4.1)

we can definé|; | as
Mi, == min(M, min{l such thatSe(l) < Tol}). (4.2)

In the following numerical examples we contrast Gegenbauer reconstruction with parameters
(N/8)(b — a)/2 and the Freud robust Gibbs complement with parameters (3.14) whef2*. For
both reprojection bases, the number of temss selected as in (3.17), with the above limiting where
Tol := 1074, As a result, accuracy beyond this threshold cannot be expected. Standard trapezoidal
guadrature with spacing/12N) was used in computinm(l) Whereasﬁ (1) was computed us-
ing the trapezoidal quadrature with only the given equidistant samp{e/N)}fj’:‘_lN. This rather course
quadrature is permissible due to the exponential accuracy of the trapezoidal sum (see, e.g., [3,13]).

One of the primary motivations for the development of the robust Gibbs complements was to find
a reprojection basis that, rather than be extrapolatory, utilizes as much of the region of smoothness a:
possible while still satisfying the second requirement of a Gibbs complement. In doing so, the robust
Gibbs complement also avoids the Runge phenomenon, allowing the recovery of any piecewise analytic
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function onceN is sufficiently large to resolve it. As the following examples illustrate, not only is the
Runge phenomenon eliminated, but the effects of round-off error are clearly reduced.

We begin by considering the reconstruction of a function suggested in [2] to measure the Runge
phenomenon,

symmpole I~ 2 1 1 }
FEE 2 = 3] {[i”s(zs)]2 TGN | D R ] @3

wherez, is taken to be a fixed constant afi@¥™™P°€ js a function ofx with a pole at;,. We then measure
the ability of the Gegenbauer and Freud reprojection bases to ret&08t°¢ depending on the location
of the polez;. Figs. 4a—4c illustrate that the region of failed convergence due to Runge phenomenon is not
decreasing for the Gegenbauer weigkat N /8, which although not optimal, satisfies both theoretical and
numerical concerns from [11,12]. However, Figs. 4d—4f show that the region of convergence consistently
increases for the Freud bases. In fact, the Runge phenomenon is not apparent at all. Rather, the regior
of failed convergence is a result of the function not being fully resolved with the limited amount of
information in the known Fourier coefficientsf>™™"*®} ;< v. This example emphasizes how critical
the choice of parameters is to the Gegenbauer reconstruction. Specifically, we note the degradation of
results from Fig. 4b to Fig. 4c. As was shown in [2,12], the reprojection polynomial dédread
weight orderr must become increasingly smaller proportionaMas the off-axis singularity shrinks to
the origin.

Having established the advantages of the robust Gibbs complement in overcoming the Runge phe-
nomenon, we now compute an approximation of another test function put forth in [20] as a challenging
function due to its sharp peak and the different regularity constants for the left and right regions:

(207D _ 1 o™y /(e" — 1), xe[-1,-1/2),

fZ(x):{—Sin(ZJTX/3+7T/3)’ xe[-1/2,1).

Fig. 5 shows the behavior of both the Gegenbauer and Freud polynomial reconstructions in each
region of smoothness. For the regionl, —1/2), both reconstructions continue to converge in similar
fashions due to the region not being fully resolved below machine epsilavi f0256 However, for the
interval(—1/2, 1), both methods have enough terms to fully resolve the function. Unfortunately, after the
Gegenbauer method has nearly resolved the function Mith 128, it continues to increase the weight
parameteri ~ N, causing the reconstruction to become more extrapolatory. As a result, the error in the
Gegenbauer reconstruction increases due to the round-off errors and inherently poor conditioning of the
Gegenbauer polynomials (Fig. 1b). Methods have been developed in [11] which attempt to overcome
this effect by properly selecting the Gegenbauer weight pararheldre increasingly poor conditioning
can be ameliorated by limiting, but only by accepting a reduced rate of convergence. This is evident
in Fig. 5a forx € (—1/2, 1), where the accuracy of the Gegenbauer reconstruction visibly decreases as
the original projection ordeN increases. On the other hand, as is evident in Fig. 2b, the Freud robust
Gibbs complement actually provides increasingly better conditioned basésrageases, rather than
just limiting the poor conditioning. This is further exhibited in Fig. 5b, where it is clear that in contrast
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(© ®

Fig. 4. The logg of the L®°[—1, 1] error in recoveringfSY™MPOIE for 7 in the upper right quadrant of the complex plane,

i.e., [S(zs)], [M(zs)] € (O, 1], from its truncated Fourier coefficients, witti = 64 (a, d),N =128 (b, e), andV = 256 (c, f).

N(zs) andI(zs) make up the respective horizontal and vertical axes. Results are from the Gegenbauer reprojection basis with
A = N/8 (left) and the Freud robust Gibbs complement (right) with parameters (3.14) whet® 24, In each plot the thick

contour line designating error of unit amplitude can be viewed as separating the region where an approximation is recovered
from the region where the reconstruction fails. Note that the region for which the Gegenbauer reprojection fails to converge
does not decrease with increasiNg whereas the Freud reprojection yields not only an increasingly accurate reconstruction,
but also the region where the function is fully resolved from the given information is also increasing.
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(@) (b)

Fig. 5. The error in recovering using the (a) Gegenbauer and (b) Freud reprojection bases with the same parameters as in
Fig. 4, except for the scaling by — a)/2 due to the length of the two intervals of smoothnésd,, —1/2) and(—1/2, 1). The
given data were the global, taken oVerl, 1], Fourier series, wittv = 64 (upper solid), 128 (dotted), and 256 (lower solid).

Table 1

The L error for the approximation of2(x)

N Gegenbauer Freud
32 605(—1) 8.90(—1)
64 573(-1) 1.37(-1)

128 134(-4) 1.84(—-4)
256 152(—6) 1.01(—7)
512 216(—9) 9.33(—13)

1024 143(-7) 5.27(—13

2048 899(—7) 5.23(—-14%)

4096 123(—6) 6.59(—14)

Here we use the notatiai{—r) := z x 10~". The Gegenbauer reprojection bases becomes
increasingly extrapolatory, resulting in increasing round-off erronfos 512. In contrast,

the Freud robust Gibbs complement resolves the functiotv by 512, and automatically
maintains the accuracy at about the user defined limiting tolerance level, herelT&f.

to the increasing error in the Gegenbauer reconstruction, the Freud basis yields increasing accuracy in
both regions of smoothness. This effect is further illustrated in Table 1 where the maximuenrors,
excluding the discontinuities = —1, —1/2, and 1 are measured. The Freud basis resolves the function
and then maintains the accuracy at the size of the user selected Tol, whereas the Gegenbauer weigh
becomes more extrapolatory. The resulting poorly conditioned Gegenbauer polynomials cause the overall
error to increase after the function is fully resolved.

5. Summary and future work

Gegenbauer reconstruction with suitably selected weight paraeted reprojection orde# has
been shown to recover a function from its (pseudo)spectral data with exponential accuracy up to the
discontinuities. Unfortunately, as a result of the function-dependent paramé¢targl A ~ N, Gegen-
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bauer reconstruction suffers both from numerical round-off errors as well as the Runge phenomenon
[2,12]. Fortunately, this limitation is not due to the underlying approach of reprojecting the available
(pseudo)spectral data with a Gibbs complementary basis. Rather, these problems come directly fromn
using the Gegenbauer polynomials as the Gibbs complement.

Here we introduced a more general alternative error decomposition which make the desirable traits in
a Gibbs complement more transparent. This insight allows the proposition of an additional requirement
for the Gibbs complement. Specifically, we impose that the weight of the new orthogonal reprojection
basis approaches a weight whose associated orthogonal polynomials yield exponentially convergent se
ries expansions of functions analytic ¢rl, 1]. We refer to such reprojection basesrabust Gibbs
complementsThe Freud weights as defined in (3.13) satisfy this requirement, and have the additional
desirable property of converging }@_1 1). As a result, the convergence properties of their corresponding
Freud polynomials approach those of the more familiar Legendre polynomials for the reconstruction of
smooth functions in—1, 1], i.e., they yield spectral convergence.

By satisfying this additional property, the reprojection bases are better conditioned in the sense that the
amplitude of the polynomials does not grow too rapidly. Moreover, the weight more uniformly utilizes
the region of smoothness, and the resulting reprojection basis approaching the Legendre polynomials
which are orthogonal under the limiting weigzhf{z = x(-11)- Although the optimal robust Gibbs com-
plement is not known, we propose the properly selected Freud polynomials to illustrate the advantages
of robust Gibbs complements over the Gegenbauer polynomials. Unfortunately, although the Freud poly-
nomials have been studied extensively since the early 1970’s [9], many of their properties are not known
for general parameter. As a consequence we are so far unable to determine the optimal parameters for
the Freud weight (3.13). Nevertheless, the values selected in (3.14) are numerically shown to satisfy the
properties of a robust Gibbs complement, as displayed in Fig. 3. The numerical examples in Section 4
illustrate that the Freud polynomials achieve exponential accuracy up to the discontinuities without suf-
fering from the Runge phenomenon or significant round-off errors. It should also be noted that unlike
Gegenbauer reconstruction, which requires function-dependent parameter tuning, the Freud parametel
(3.14) are function independent.

Although the Freud reprojection basis establishes the importance of using a robust Gibbs complement
a great deal of work remains in fully developing this idea. The following topics will be considered in
future investigations:

o Ideally, we wish to determine the optimal robust Gibbs complementary basis in that theP§pti
is “most orthogonal” td — Sy . If this cannot be done explicitly, it would be useful either to determine
the properties of the Freud polynomials necessary to rigorously prove the exponential convergence of
the reprojection, or possibly to select another basis which allows such a rigorous proof. Such a result
will not only further establish the Freud basis as an alternative for Gegenbauer post-processing, but
should also allow for the optimal selection of the weight parameters as a function of the number of
terms in the given (pseudo)spectral projectitn,

¢ Itis important to ensure the near orthogonality/of 7 and Py, (second requirement) even when
w" approaches a weight whose space spanneg;pyis not exponentially orthogonal td — 1.
In particular, we know from [16] and subsequent papers that the Legendre polynomials, to which
our polynomials approach in limit, do not constitute a basis that satisfies this requirement. However,
by appropriate selection o/ as a function ofN the second Gibbs complement property can be
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maintained. With a further understanding of the particular reprojection basis, the precise behavior of
M can be established.

e As proposed in [15], the most optimal Gibbs complementary basis may not consist of polynomials.
Hence it would be useful to explore the construction a robust Gibbs complement that may not be
composed of polynomials.

e The Gegenbauer reconstruction method has also been developed when the original projection ba-
sis consists of orthogonal polynomials, specifically Legendre, Chebyshev, and general Gegenbauer
polynomial bases. In addition the method has been utilized for spherical harmonics in two dimen-
sions. Robust Gibbs complements should similarly be developed for these commonly used global
projections in addition to the Fourier (pseudo)spectral basis discussed here.

e Finally, we wish to study the application of the Freud reprojection basis to various scientific dis-
ciplines. In particular, the Gegenbauer reconstruction method has been successfully applied in a
number of areas, including medical imaging and the post-processing of numerical hyperbolic partial
differential equations that admit solutions with shocks. Having established several significant advan-
tages of the Freud robust Gibbs complement, we will pursue its effective implementation for various
applications.

Acknowledgments

The authors thank David Gottlieb for many enlightening conversations on the resolution of the Gibbs
phenomenon, and Paul Nevai for generously sharing his knowledge on orthogonal polynomials.

Appendix A. Gevrey weight functions and root exponential decay

Below, we briefly sketch an argument to show that infinitely differentiable compactly supported weight
functions, discussed in Section 3.2.2 will yield a reprojection basis that provides root exponential accu-
racy. A more detailed analysis can be found in [19,20].

Gevrey regular functions are a class of compactly supported infinitely differentiable functions, classi-
fied in terms of the growth rate of their derivatives. Specifically, a function is Gevrey order alpha is
equivalent to the statement

|v¥ |~ < Constn~*(sh*

for somen > 0 anda > 1. With this bound, it is straightforward to show that the Fourier coefficients
of a function with Gevrey regular periodic extension decay at the root exponential rate. We sketch the
technique for this here.
Consider a Gevrey alpha regular functigi;x), compactly supported i1, 1]. We apply integration
by partss times to its Fourier coefficient (2.1) to yield

1
fe= 21(—i7'rk)X/x//(‘)(x)exp(—inkx)dx.
-1
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Taking the absolute value of each side and passing it inside the integral we obtain
e < (b)) ™

which is valid for anys. By substituting in the Gevrey regularity bound and using Sterling’s inequality,

s!<Const-\/_<i) ,
e

we have

~ ¥ §
< Const s%/2 )
‘fk‘ S €a7TT]|k|

Since this bound is valid for ail, we can arrive at the nearly smallest bound by minimizing the dominant
term, (s®/e*mn|k|)*, overs. The resulting minimum bound is

| /| < Const /[k| exp(—a(nlkl) "), s =mnlkl, (A1)

illustrating the root exponential decay. The case of true exponential deeay, corresponds to analytic
functions which necessarily cannot be compactly supported.

Appendix B. The Stieltjesalgorithm for computing the Freud reprojection basis

Below, we present the Stieltjes algorithm for computing polynomial orthogonal under the discrete
guadrature

(fs &hwn =) f(0,)g(t)w" (1), (B.1)

wherez, is a finite stencil of—1, 1]. Here we consider only the case of an even weight), which
simplifies the three term recursion relationship for the orthogonal polynomials to

Wty (1) = 19 (1) — B4 ().

Applying the inner product for the orthogonal polynomials results in the formula for the recursion coef-
ficient,

Bl = M (B.2)

(Wl W )ur

The Stieltjes algorithm for computing a family of orthogonal polynomials on a fixed stgpgilbegins
with the base polynomialg_,(z) := 0 and¥y(¢) := 1 and computes the first recursion coefficigpt
This coefficient is used to compute the values of the next orthogonal polynomial on the steneil
¥ (t,). The procedure is repeated inductively to compute the desired number of recursion coefficients
{ﬁk},figl. A more comprehensive discussion of the Stieltjes and other algorithms for computing orthogo-
nal polynomials is given in [10].

When givenSy f(-) (2.1), the Freud orthogonal polynomials are computed on the meshy/(2N),
wherev = —2N,-2N + 1,...,2N — 1. Alternatively, when given the equidistant sampled function
valuesf (x;) forx; = -1+ j/(2N), j =0, ..., 2N — 1, the Freud orthogonal polynomials are computed
on the same stencil. We note again that although the mesh is course givErie¢hm (pseudo)spectral
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information, a very accurate approximation can be recovered due to the exponential accuracy of the
trapezoidal quadrature formula for smooth periodic functions (e.g., [3,13]). We further note that while the
polynomials generated from the Stieltjes algorithm are orthogonal under the discrete inner product (B.1),
as N increases the recursion coefficients (B.2) approach those of the family of polynomials which are
orthogonal under the continuous inner product. Consequently, the generated orthogonal polynomials
approach those which are orthogonal under the continuous inner product [10].
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